Hopping kinetics on a finite 1D chain: An exact analysis

被引:5
|
作者
McEwen, J. -S.
Payne, S. H.
Kreuzer, H. J.
Bracher, C.
机构
[1] Univ Libre Bruxelles, Ctr Nonlinear Phenomena & Complex Syst, B-1050 Brussels, Belgium
[2] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 3J5, Canada
[3] Bryn Mawr Coll, Dept Phys, Bryn Mawr, PA 19010 USA
关键词
lattice gas; nonequilibrium thermodynamics and statistical mechanics; models of surface kinetics; surface diffusion;
D O I
10.1002/qua.21143
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
in the present study, we develop a kinetic lattice gas model for hopping in an inhomogeneous one-dimensional adsorbate system with nearest-neighbor interactions and periodic boundary conditions. From the matrices of the associated equations of motion, we can calculate adsorbate correlation functions in momentum space exactly on all time and length scales. The corresponding eigenvalues and eigenvectors in the long-time, long-wavelength limit yield the diffusion coefficient. We analyze its dependence on coverage and temperature and compare our results with earlier analytic work for this model. Our approach is readily extendable to two-dimensional systems. (C) 2006 Wiley Periodicals, Inc.
引用
收藏
页码:2889 / 2903
页数:15
相关论文
共 50 条
  • [1] Design and Comparative Analysis of 1D Hopping Robots
    Ambrose, Eric
    Csomay-Shanklin, Noel
    Or, Yizhar
    Ames, Aaron
    [J]. 2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2019, : 5717 - 5724
  • [2] Exact quantum dynamics of yrast states in the finite 1D Bose gas
    Kaminishi, Eriko
    Sato, Jun
    Deguchi, Tetsuo
    [J]. 22ND INTERNATIONAL LASER PHYSICS WORKSHOP (LPHYS'13), 2014, 497
  • [3] The construction of 1D wavelet finite elements for structural analysis
    J. W. Xiang
    X. F. Chen
    Z. J. He
    H. B. Dong
    [J]. Computational Mechanics, 2007, 40 : 325 - 339
  • [4] The construction of 1D wavelet finite elements for structural analysis
    Xiang, J. W.
    Chen, X. F.
    He, Z. J.
    Dong, H. B.
    [J]. COMPUTATIONAL MECHANICS, 2007, 40 (02) : 325 - 339
  • [5] ON STABILITY OF 1D EXACT INVERSE METHODS
    CARRION, PM
    [J]. INVERSE PROBLEMS, 1986, 2 (01) : 1 - 22
  • [6] Tolerance analysis with the 1D angular dimension chain: Application
    Chahbouni, Mouhssine
    Elmouden, Mustapha
    Miskin, Meryem
    Boutahari, Said
    Amegouz, Driss
    [J]. LOGISTIQUA2020: 2020 IEEE 13TH INTERNATIONAL COLLOQUIUM OF LOGISTICS AND SUPPLY CHAIN MANAGEMENT (LOGISTIQUA 2020), 2020,
  • [7] Disorder and Interactions on a 1D Chain
    Carter, Jonathan M.
    MacKinnon, Angus
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2003, 72
  • [8] A theoretical consideration of disorder in a finite 1D metal cluster chain in a nanoporous solid
    Simon, U
    Gasparian, V
    [J]. PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 1998, 205 (01): : 223 - 227
  • [9] Correlated hopping in the 1D Falicov-Kimball model
    Gajek, Z
    Lemanski, R
    [J]. ACTA PHYSICA POLONICA B, 2001, 32 (10): : 3473 - 3476
  • [10] HOPPING OF ELECTRON LOCALIZATION POSITIONS IN 1D RANDOM SYSTEM
    AZBEL, M
    MINTS, RG
    [J]. SOLID STATE COMMUNICATIONS, 1995, 94 (01) : 67 - 69