An efficient multiple time-scale reversible integrator for the gravitational N-body problem

被引:5
|
作者
Leimkuhler, B [1 ]
机构
[1] Univ Leicester, Ctr Math Modelling, Leicester LE1 7RH, Leics, England
关键词
n-body problems; Hamiltonian systems; time-reversible discretization; averaging;
D O I
10.1016/S0168-9274(02)00124-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A large gravitational (or classical atomic) N-body simulation typically includes fast binary stars, planet-moon systems, or other tightly bound objects, demanding a small timestep and effectively limiting the time interval over which simulation can take place. While ad-hoc averaging schemes have been used before, these are generally neither symplectic nor reversible, impairing their long time-interval stability properties. In this article, we describe the design of a powerful reversible integrator based on partitioning, averaging, reversible adaptive timestepping, and smooth force decomposition. This method also incorporates a modification of the reversible averaging method of [J. Comput. Phys. 171 (2001) 95] based on an interpolation of the forces acting on the fast variables which is potentially much more efficient than the original method. (C) 2002 IMACS. Published by Elsevier Science B.V. All. rights reserved.
引用
收藏
页码:175 / 190
页数:16
相关论文
共 50 条
  • [1] A time-reversible, regularized, switching integrator for the N-body problem
    Kværno, A
    Leimkuhler, B
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 22 (03): : 1016 - 1035
  • [2] A reversible averaging integrator for multiple time-scale dynamics
    Leimkuhler, B
    Reich, S
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 171 (01) : 95 - 114
  • [3] A parallel multiple time-scale reversible integrator for dynamics simulation
    Jia, ZD
    Leimkuhler, B
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2003, 19 (03): : 415 - 424
  • [4] An exactly conservative integrator for the n-body problem
    Kotovych, O
    Bowman, JC
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (37): : 7849 - 7863
  • [5] The solution of the gravitational n-body problem
    Escultura, EE
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (08) : 5021 - 5032
  • [6] Global Time-Renormalization of the Gravitational N-body Problem
    Antonana, Mikel
    Chartier, Philippe
    Makazaga, Joseba
    Murua, Ander
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2020, 19 (04): : 2658 - 2681
  • [7] Conjugate points in the gravitational n-body problem
    Mingarelli, AB
    Mingarelli, CMF
    [J]. CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2005, 91 (3-4): : 391 - 401
  • [8] Conjugate Points in the Gravitational n-Body Problem
    Angelo B. Mingarelli
    Chiara M. F. Mingarelli
    [J]. Celestial Mechanics and Dynamical Astronomy, 2005, 91 : 391 - 401
  • [9] Variational integrators for the gravitational N-body problem
    Farr, Will M.
    Bertschinger, Edmund
    [J]. ASTROPHYSICAL JOURNAL, 2007, 663 (02): : 1420 - 1433
  • [10] JANUS: a bit-wise reversible integrator for N-body dynamics
    Rein, Hanno
    Tamayo, Daniel
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 473 (03) : 3351 - 3357