A Constraint-Tightening Approach to Nonlinear Model Predictive Control with Chance Constraints for Stochastic Systems

被引:17
|
作者
Santos, Tito L. M. [1 ]
Bonzanini, Angelo D. [2 ]
Heirung, Tor Aksel N. [2 ]
Mesbah, Ali [2 ]
机构
[1] Univ Fed Bahia, Dept Elect Engn, BR-40210630 Salvador, BA, Brazil
[2] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
关键词
STABILITY; TUBES; MPC;
D O I
10.23919/acc.2019.8814623
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a nonlinear model predictive control (NMPC) strategy for stochastic systems subject to chance constraints. The notion of stochastic tubes is extended to nonlinear systems to present a constraint tightening strategy that ensures stability and recursive feasibility of NMPC in the presence of stochastic uncertainties. State constraints are tightened recursively by constructing a sequence of sets from an initial constraint set, which is tightened using constraint backoff parameters obtained from either the probability distribution or the empirical cumulative distribution of the uncertainties. The performance of the NMPC strategy with chance constraints is compared to that of robust NMPC on a DC-DC converter benchmark case study.
引用
收藏
页码:1641 / 1647
页数:7
相关论文
共 50 条
  • [1] Constraint-Tightening and Stability in Stochastic Model Predictive Control
    Lorenzen, Matthias
    Dabbene, Fabrizio
    Tempo, Roberto
    Allgoewer, Frank
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (07) : 3165 - 3177
  • [2] A Constraint-Tightening Approach to Nonlinear Stochastic Model Predictive Control under General Bounded Disturbances
    Schlueter, Henning
    Allgoewer, Frank
    [J]. IFAC PAPERSONLINE, 2020, 53 (02): : 7130 - 7135
  • [3] An Improved Constraint-Tightening Approach for Stochastic MPC
    Lorenzen, Matthias
    Allgoewer, Frank
    Dabbene, Fabrizio
    Tempo, Roberto
    [J]. 2015 AMERICAN CONTROL CONFERENCE (ACC), 2015, : 944 - 949
  • [4] Stochastic Model Predictive Control with adaptive constraint tightening for non-conservative chance constraints satisfaction
    Munoz-Carpintero, Diego
    Hu, Guoqiang
    Spanos, Costas J.
    [J]. AUTOMATICA, 2018, 96 : 32 - 39
  • [5] A novel constraint-tightening approach for robust data-driven predictive control
    Kloeppelt, Christian
    Berberich, Julian
    Allgoewer, Frank
    Mueller, Matthias A.
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2022,
  • [6] Stochastic Nonlinear Model Predictive Control with Joint Chance Constraints
    Bavdekar, Vinay A.
    Mesbah, Ali
    [J]. IFAC PAPERSONLINE, 2016, 49 (18): : 270 - 275
  • [7] A novel constraint tightening approach for nonlinear robust model predictive control
    Koehler, Johannes
    Mueller, Matthias A.
    Allgoewer, Frank
    [J]. 2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC), 2018, : 728 - 734
  • [8] Model predictive control for uncertain nonlinear systems subject to chance constraints
    Yu, Shuyou
    Qu, Ting
    Findeisen, Rolf
    Chen, Hong
    [J]. 2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 2751 - 2756
  • [9] Distributed stochastic model predictive control for systems with stochastic multiplicative uncertainty and chance constraints
    Wang, Hongyuan
    Wang, Jingcheng
    Xu, Haotian
    Zhao, Shangwei
    [J]. ISA TRANSACTIONS, 2022, 121 : 11 - 20
  • [10] Tube-based Stochastic Nonlinear Model Predictive Control: A Comparative Study on Constraint Tightening
    Bonzanini, Angelo D.
    Santos, Tito L. M.
    Mesbah, Ali
    [J]. IFAC PAPERSONLINE, 2019, 52 (01): : 598 - 603