Noise residuals for GW150914 using maximum likelihood and numerical relativity templates

被引:7
|
作者
Jackson, Andrew D. [1 ]
Liu, Hao [2 ,3 ,4 ]
Naselsky, Pavel [2 ,3 ]
机构
[1] Niels Bohr Int Acad, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
[2] Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
[3] Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
[4] Chinese Acad Sci, Inst High Energy Phys, Key Lab Particle & Astrophys, 19B YuQuan Rd, Beijing, Peoples R China
基金
新加坡国家研究基金会;
关键词
gravitational wave detectors; gravitational waves / experiments; gravitational waves / sources;
D O I
10.1088/1475-7516/2019/05/014
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We reexamine the results presented in [1] in which the properties of the noise residuals in the 40 ms chirp domain of GW150914 were investigated. This paper con firmed the presence of strong (i.e., about 0.80) correlations between residual noise in the Hanford and Livingston detectors in the chirp domain as previously seen by [2] when using a numerical relativity template given in [3]. It was also shown in [1] that a so-called maximum likelihood template can reduce these statistically significant cross-correlations. Here, we demonstrate that the reduction of correlation and statistical significance is due to (i) the use of a peculiar template with extreme spin (0.977), which is qualitatively different from the properties of GW150914 originally published by LIGO, (ii) a suspicious MCMC chain, (iii) uncertainties in the matching of the maximum likelihood (ML) template to the data in the Fourier domain, and (iv) a biased estimation of the significance that gives counterintuitive results. We show that rematching the maximum likelihood template to the data in the 0.2 s domain containing the GW150914 signal restores these correlations at the level of 60% of those found previously [1]. With necessary corrections, the probability given in [1] for the residual correlation will decrease by more than one order of magnitude. Since the ML template is itself problematic, results associated with it are illustrative rather than final.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Numerical relativity simulation of GW150914 beyond general relativity
    Okounkova, Maria
    Stein, Leo C.
    Moxon, Jordan
    Scheel, Mark A.
    Teukolsky, Saul A.
    [J]. PHYSICAL REVIEW D, 2020, 101 (10)
  • [2] Tests of General Relativity with GW150914
    Abbott, B. P.
    Abbott, R.
    Abbott, T. D.
    Abernathy, M. R.
    Acernese, F.
    Ackley, K.
    Adams, C.
    Adams, T.
    Addesso, P.
    Adhikari, R. X.
    Adya, V. B.
    Affeldt, C.
    Agathos, M.
    Agatsuma, K.
    Aggarwal, N.
    Aguiar, O. D.
    Aiello, L.
    Ain, A.
    Ajith, P.
    Allen, B.
    Allocca, A.
    Altin, P. A.
    Anderson, S. B.
    Anderson, W. G.
    Arai, K.
    Araya, M. C.
    Arceneaux, C. C.
    Areeda, J. S.
    Arnaud, N.
    Arun, K. G.
    Ascenzi, S.
    Ashton, G.
    Ast, M.
    Aston, S. M.
    Astone, P.
    Aufmuth, P.
    Aulbert, C.
    Babak, S.
    Bacon, P.
    Bader, M. K. M.
    Baker, P. T.
    Baldaccini, F.
    Ballardin, G.
    Ballmer, S. W.
    Barayoga, J. C.
    Barclay, S. E.
    Barish, B. C.
    Barker, D.
    Barone, F.
    Barr, B.
    [J]. PHYSICAL REVIEW LETTERS, 2016, 116 (22)
  • [3] Investigating the noise residuals around the gravitational wave event GW150914
    Nielsen, Alex B.
    Nitz, Alexander H.
    Capano, Collin D.
    Brown, Duncan A.
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2019, (02):
  • [4] Constraining the parameters of GW150914 and GW170104 with numerical relativity surrogates
    Kumar, Prayush
    Blackman, Jonathan
    Field, Scott E.
    Scheel, Mark
    Galley, Chad R.
    Boyle, Michael
    Kidder, Lawrence E.
    Pfeiffer, Harald P.
    Szilagyi, Bela
    Teukolsky, Saul A.
    [J]. PHYSICAL REVIEW D, 2019, 99 (12)
  • [5] Modeling the source of GW150914 with targeted numerical-relativity simulations
    Lovelace, Geoffrey
    Lousto, Carlos O.
    Healy, James
    Scheel, Mark A.
    Garcia, Alyssa
    O'Shaughnessy, Richard
    Boyle, Michael
    Campanelli, Manuela
    Hemberger, Daniel A.
    Kidder, Lawrence E.
    Pfeiffer, Harald P.
    Szilagyi, Bela
    Teukolsky, Saul A.
    Zlochower, Yosef
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2016, 33 (24)
  • [6] Numerical relativity simulation of GW150914 in Einstein-dilaton-Gauss-Bonnet gravity
    Okounkova, Maria
    [J]. PHYSICAL REVIEW D, 2020, 102 (08)
  • [7] Tests of General Relativity with GW150914 (vol 116, 221101, 2016)
    Abbott, B. P.
    [J]. PHYSICAL REVIEW LETTERS, 2018, 121 (12)
  • [8] Constraining alternative theories of gravity using GW150914 and GW151226
    De laurentis, Mariafelicia
    Porth, Oliver
    Bovard, Luke
    Ahmedov, Bobomurat
    Abdujabbarov, Ahmadjon
    [J]. PHYSICAL REVIEW D, 2016, 94 (12)
  • [9] The black hole merger event GW150914 within a modified theory of general relativity
    Hess, P. O.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 462 (03) : 3026 - 3030
  • [10] GW150914 peak frequency: a novel consistency test of strong-field general relativity
    Carullo, Gregorio
    Riemenschneider, Gunnar
    Tsang, Ka Wa
    Nagar, Alessandro
    Del Pozzo, Walter
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2019, 36 (10)