For a set H & nbsp;of connected graphs, a graph G is said to be H-free if G does not contain any member of H & nbsp;as an induced subgraph. When |H|= 2, H & nbsp;is called a forbidden pair.& nbsp;In this paper, we completely characterize the forbidden pairs H & nbsp;such that every 2 connected H-free graph G satisfies p(G) - c(G) <=& nbsp;1, where p(G) and c(G) denote the order of a longest path and a longest cycle of G, respectively. This strengthens some result of Chiba et al. (2015) [7]. Furthermore, we investigate the forbidden pairs needed to guarantee a 2-connected H-free graph G satisfying p(G) - c(G) <=& nbsp;k for any positive integer k. Meanwhile, we determine the forbidden pairs H & nbsp;such that every 2-connected H-free graph G satisfies c(G) >=& nbsp;n - k for any positive integer k. These results extend the work of Faudree and Gould (1997) [12] on Hamilton cycles. (C)& nbsp;2022 Elsevier B.V. All rights reserved.
机构:
Kitasato Univ, Coll Liberal Arts & Sci, Sagamihara, Kanagawa 2288555, JapanKitasato Univ, Coll Liberal Arts & Sci, Sagamihara, Kanagawa 2288555, Japan
机构:
Res Org Informat & Syst, Natl Inst Informat, Chiyoda Ku, Tokyo 1018430, JapanRes Org Informat & Syst, Natl Inst Informat, Chiyoda Ku, Tokyo 1018430, Japan
Ozeki, Kenta
Yamashita, Tomoki
论文数: 0引用数: 0
h-index: 0
机构:
Kinki Univ, Dept Math, Higashiosaka, Osaka 5778502, JapanRes Org Informat & Syst, Natl Inst Informat, Chiyoda Ku, Tokyo 1018430, Japan