Characterizing forbidden pairs for relative length of longest paths and cycles

被引:0
|
作者
Fang, Yibin [1 ]
Xiong, Liming [2 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing 102488, Peoples R China
[2] Beijing Inst Technol, Beijing Key Lab MCAACI, Sch Math & Stat, Beijing 102488, Peoples R China
关键词
Forbidden subgraph; Forbidden pair; Relative length; Circumference; SUBGRAPHS; CLOSURE;
D O I
10.1016/j.disc.2022.112870
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a set H & nbsp;of connected graphs, a graph G is said to be H-free if G does not contain any member of H & nbsp;as an induced subgraph. When |H|= 2, H & nbsp;is called a forbidden pair.& nbsp;In this paper, we completely characterize the forbidden pairs H & nbsp;such that every 2 connected H-free graph G satisfies p(G) - c(G) <=& nbsp;1, where p(G) and c(G) denote the order of a longest path and a longest cycle of G, respectively. This strengthens some result of Chiba et al. (2015) [7]. Furthermore, we investigate the forbidden pairs needed to guarantee a 2-connected H-free graph G satisfying p(G) - c(G) <=& nbsp;k for any positive integer k. Meanwhile, we determine the forbidden pairs H & nbsp;such that every 2-connected H-free graph G satisfies c(G) >=& nbsp;n - k for any positive integer k. These results extend the work of Faudree and Gould (1997) [12] on Hamilton cycles. (C)& nbsp;2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条