Mordell-Weil lattices and toric decompositions of plane curves

被引:4
|
作者
Kloosterman, Remke [1 ]
机构
[1] Humboldt Univ, Inst Math, Unter Linden 6, D-10099 Berlin, Germany
关键词
14H20; 14H30; 14H40; 14H50; 14J27; 14J30; 14J70;
D O I
10.1007/s00208-016-1399-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend results of Cogolludo-Agustin and Libgober relating the Alexander polynomial of a plane curve C with the Mordell-Weil rank of certain isotrivial families of jacobians over of discriminant C. In the second part we introduce a height pairing on the (2, 3, 6) quasi-toric decompositions of a plane curve. We use this pairing and the results in the first part of the paper to construct a pair of degree 12 curves with 30 cusps and Alexander polynomial , but with distinct height pairing. We use the height pairing to show that these curves from a Zariski pair.
引用
收藏
页码:755 / 783
页数:29
相关论文
共 50 条