Double-shell zinc manganate hollow microspheres embedded in carbon networks as cathode materials for high-performance aqueous zinc-ion batteries

被引:20
|
作者
Wang, Shuting [1 ,4 ]
Zhang, Shipeng [1 ]
Chen, Xiangrui [1 ]
Yuan, Guanghui [3 ]
Wang, Beibei [1 ,4 ]
Bai, Jintao [1 ,4 ]
Wang, Hui [2 ,4 ]
Wang, Gang [1 ,4 ]
机构
[1] Northwest Univ, Int Collaborat Ctr Photoelect Technol & Nano Func, Inst Photon & Photon Technol, State Key Lab Photoelect Technol & Funct Mat, Xian 710127, Peoples R China
[2] Northwest Univ, Coll Chem & Mat Sci, Key Lab Synthet & Nat Funct Mol Chem, Minist Educ, Xian 710127, Peoples R China
[3] Ankang Univ, Dept Chem & Chem Engn, Ankang 725000, Shaanxi, Peoples R China
[4] Shaanxi Joint Lab Graphene NWU, Xian 710127, Peoples R China
基金
中国国家自然科学基金;
关键词
Zinc manganate; Hollow structure; Interconnected carbon network; Waffle-like architecture; Cathode material; Aqueous zinc-ion battery; ZN-MN BATTERIES; LITHIUM-STORAGE; LONG-LIFE; ZNMN2O4; GRAPHENE; ANODE; ELECTROCATALYST; NANOPARTICLES; ELECTRODES;
D O I
10.1016/j.jcis.2020.07.053
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Currently, aqueous zinc-ion batteries are receiving extraordinary attention because of their cheap price, superior energy density and great security. However, the inferior specific capacity and low rate capability significantly hamper their further widespread application. Herein, a novel egg waffle-like architecture consisting of double-shell ZnMn2O4 hollow microspheres embedded in 2D carbon networks (ZnMn2O4@C) is designed and employed as a cathode material for aqueous zinc-ion batteries. Specifically, the ZnMn2O4@C electrode displays a capacity of 481 mAh g(-1) at 0.2 A g(-1) after 110 cycles with excellent cycling stability. The superior cycling stability of the ZnMn2O4@C electrode is ascribed to the synergistic effect of the double-shell ZnMn2O4 hollow microspheres, which offer sufficient space to withstand volume expansion during Zn2+ intercalation/deintercalation process, as well as the 2D continuous conductive and interconnected carbon network, which facilitates rapid electronic transmission and guarantees good structural mechanical stability. This study offers a fascinating cathode material and extends the available choices for manganate based-materials in rechargeable aqueous zinc-ion batteries. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:528 / 539
页数:12
相关论文
共 50 条
  • [1] Hierarchical Carbon Nanosheet Embedded MnOx Cathode for High-Performance Aqueous Zinc-Ion Batteries
    Zhang, Shimeng
    Wang, Xiaoqi
    Li, Jianbo
    Chen, Yuwei
    Wu, Yu
    Bai, Shengchi
    Jin, Xu
    Jin, Bowen
    Shao, Mingfei
    BATTERIES & SUPERCAPS, 2023, 6 (03)
  • [2] Manganese oxides hierarchical microspheres as cathode material for high-performance aqueous zinc-ion batteries
    Yang, Bo
    Cao, Xianwen
    Wang, Shenghan
    Wang, Ning
    Sun, Chenglin
    ELECTROCHIMICA ACTA, 2021, 385 (385)
  • [3] Recent Advances on Spinel Zinc Manganate Cathode Materials for Zinc-Ion Batteries
    Cai, Kexing
    Luo, Shao-hua
    Feng, Jie
    Wang, Jiachen
    Zhan, Yang
    Wang, Qing
    Zhang, Yahui
    Liu, Xin
    CHEMICAL RECORD, 2022, 22 (01):
  • [4] Recent Progress on High-Performance Cathode Materials for Zinc-Ion Batteries
    Zhang, Maiwen
    Liang, Ruilin
    Or, Tyler
    Deng, Ya-Ping
    Yu, Aiping
    Chen, Zhongwei
    SMALL STRUCTURES, 2021, 2 (02):
  • [5] Unlocking Layered Double Hydroxide as a High-Performance Cathode Material for Aqueous Zinc-Ion Batteries
    Zhao, Yajun
    Zhang, Pengjun
    Liang, Jinrui
    Xia, Xiaoyu
    Ren, Longtao
    Song, Li
    Liu, Wen
    Sun, Xiaoming
    ADVANCED MATERIALS, 2022, 34 (37)
  • [6] High-Performance Aqueous Zinc-Ion Batteries Realized by MOF Materials
    Xuechao Pu
    Baozheng Jiang
    Xianli Wang
    Wenbao Liu
    Liubing Dong
    Feiyu Kang
    Chengjun Xu
    Nano-Micro Letters, 2020, 12
  • [7] High-Performance Aqueous Zinc-Ion Batteries Realized by MOF Materials
    Pu, Xuechao
    Jiang, Baozheng
    Wang, Xianli
    Liu, Wenbao
    Dong, Liubing
    Kang, Feiyu
    Xu, Chengjun
    NANO-MICRO LETTERS, 2020, 12 (01)
  • [8] High-Performance Aqueous Zinc-Ion Batteries Realized by MOF Materials
    Xuechao Pu
    Baozheng Jiang
    Xianli Wang
    Wenbao Liu
    Liubing Dong
    Feiyu Kang
    Chengjun Xu
    Nano-Micro Letters, 2020, 12 (11) : 130 - 144
  • [9] The progress of cathode materials in aqueous zinc-ion batteries
    Zhou, Xinchi
    Jiang, Shan
    Zhu, Siao
    Xiang, Shuangfei
    Zhang, Zhen
    Xu, Xiangyu
    Xu, Yuanyuan
    Zhou, Jian
    Tan, Suchong
    Pan, Zhengdao
    Rao, Xingyou
    Wu, Yutong
    Wang, Zhoulu
    Liu, Xiang
    Zhang, Yi
    Zhou, Yunlei
    NANOTECHNOLOGY REVIEWS, 2023, 12 (01)
  • [10] Electroactivation-induced hydrated zinc vanadate as cathode for high-performance aqueous zinc-ion batteries
    Luo, Ping
    Zhang, Wenwei
    Wang, Shiyu
    Liu, Gangyuan
    Xiao, Yao
    Zuo, Chunli
    Tang, Wen
    Fu, Xudong
    Dong, Shijie
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 884