Equilibrium stability for non-uniformly hyperbolic systems

被引:5
|
作者
Alves, Jose F. [1 ]
Ramos, Vanessa [2 ]
Siqueira, Jaqueline [3 ]
机构
[1] Univ Porto, Ctr Matemat, Rua Campo Alegre 687, P-4169007 Porto, Portugal
[2] UFMA, Ctr Ciencias Exatas & Tecnol, Av Portugueses 1966, BR-65080805 Bacanga, Sao Luis, Brazil
[3] PUC Rio, Dept Matemat, Marques de Sao Vicente 225, BR-22545390 Gavea, RJ, Brazil
基金
巴西圣保罗研究基金会;
关键词
VARIATIONAL PRINCIPLE; ROBUST CLASSES; SRB MEASURES; STATES; ENTROPY; HORSESHOES; UNIQUENESS; EXISTENCE; FORMALISM; MAPS;
D O I
10.1017/etds.2017.138
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that for a wide family of non-uniformly hyperbolic maps and hyperbolic potentials we have equilibrium stability, i.e. the equilibrium states depend continuously on the dynamics and the potential. For this we deduce that the topological pressure is continuous as a function of the dynamics and the potential. We also prove the existence of finitely many ergodic equilibrium states for non-uniformly hyperbolic skew products and hyperbolic Holder continuous potentials. Finally, we show that these equilibrium states vary continuously in the weak* topology within such systems.
引用
收藏
页码:2619 / 2642
页数:24
相关论文
共 50 条
  • [1] EQUILIBRIUM STATES FOR NON-UNIFORMLY HYPERBOLIC SYSTEMS: STATISTICAL PROPERTIES AND ANALYTICITY
    Afonso, Suzete Maria
    Ramos, Vanessa
    Siqueira, Jaqueline
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (09) : 4485 - 4513
  • [2] Stochastic stability of non-uniformly hyperbolic diffeomorphisms
    Alves, Jose F.
    Araujo, Vitor
    Vasquez, Carlos H.
    STOCHASTICS AND DYNAMICS, 2007, 7 (03) : 299 - 333
  • [3] Multifractal analysis of non-uniformly hyperbolic systems
    Anders Johansson
    Thomas M. Jordan
    Anders Öberg
    Mark Pollicott
    Israel Journal of Mathematics, 2010, 177 : 125 - 144
  • [4] Mixing for Some Non-Uniformly Hyperbolic Systems
    Liverani, Carlangelo
    Terhesiu, Dalia
    ANNALES HENRI POINCARE, 2016, 17 (01): : 179 - 226
  • [5] Mixing for Some Non-Uniformly Hyperbolic Systems
    Carlangelo Liverani
    Dalia Terhesiu
    Annales Henri Poincaré, 2016, 17 : 179 - 226
  • [6] Symbolic dynamics for non-uniformly hyperbolic systems
    Lima, Yuri
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2021, 41 (09) : 2591 - 2658
  • [7] Multifractal analysis of non-uniformly hyperbolic systems
    Johansson, Anders
    Jordan, Thomas M.
    Oberg, Anders
    Pollicott, Mark
    ISRAEL JOURNAL OF MATHEMATICS, 2010, 177 (01) : 125 - 144
  • [8] Invariant manifolds and equilibrium states for non-uniformly hyperbolic horseshoes
    Leplaideur, Renaud
    Rios, Isabel
    NONLINEARITY, 2006, 19 (11) : 2667 - 2694
  • [9] Dimension estimates and approximation in non-uniformly hyperbolic systems
    Wang, Juan
    Cao, Yongluo
    Zhao, Yun
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2024, 44 (10) : 2975 - 3001
  • [10] Approximation of Bernoulli measures for non-uniformly hyperbolic systems
    Liao, Gang
    Sun, Wenxiang
    Vargas, Edson
    Wang, Shirou
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2020, 40 (01) : 233 - 247