Parametric blind deconvolution for passive millimeter wave images with framelet regularization

被引:9
|
作者
Fang, Houzhang [1 ]
Yan, Luxin [1 ]
机构
[1] Huazhong Univ Sci & Technol, Inst Pattern Recognit & Artificial Intelligence, Sci & Technol Multispectral Informat Proc Lab, Wuhan 430074, Hubei, Peoples R China
来源
OPTIK | 2014年 / 125卷 / 03期
基金
中国国家自然科学基金;
关键词
Parametric blind deonvolution; Passive millimeter-wave images; Framelet; Split Bregman method; SINGLE IMAGE; RESTORATION; SUPERRESOLUTION; PERFORMANCE; BLUR;
D O I
10.1016/j.ijleo.2013.09.010
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A poor inherent resolution capability of the passive millimeter-wave (PMMW) imaging becomes a problem in many applications. This paper proposes a parametric blind deconvolution approach for improving the resolution of PMMW images with low signal-to-noise ratio. Image deconvolution is a challenging ill-posed inverse problem when only partial knowledge of the point spread function (PSF) is available, therefore, regularization techniques need to be used. To restore high quality PMMW image, framelet based regularization constraint is incorporated into parametric blind PMMW image deconvolution framework, which is modeled as an alternative optimization problem about the image and the PSF. The PSF is modeled as a parametric form to restrict the PSF solution space. Furthermore, the split Bregman iteration is used to solve the resulting minimization problem. Comparative experimental results on simulated and real PMMW images show that the proposed method can effectively suppress noise, reduce artifacts, and improve the spatial resolution. (C) 2013 Elsevier GmbH. All rights reserved.
引用
收藏
页码:1454 / 1460
页数:7
相关论文
共 50 条
  • [2] Blind Poissonian images deconvolution with framelet regularization
    Fang, Houzhang
    Yan, Luxin
    Liu, Hai
    Chang, Yi
    OPTICS LETTERS, 2013, 38 (04) : 389 - 391
  • [3] Parametric blind deconvolution for passive millimeter wave images basing on image decomposition
    Fang, Houzhang
    Yan, Luxin
    Zhang, Tianxu
    Liu, Hai
    Jin, Mingzhi
    MIPPR 2011: MULTISPECTRAL IMAGE ACQUISITION, PROCESSING, AND ANALYSIS, 2011, 8002
  • [4] Parametric semi-blind deconvolution algorithm with Huber-Markov regularization for passive millimeter-wave images
    Yan, Luxin
    Liu, Hai
    Chen, Liqun
    Fang, Houzhang
    Chang, Yi
    Zhang, Tianxu
    JOURNAL OF MODERN OPTICS, 2013, 60 (12) : 970 - 982
  • [5] Iteratively reweighted blind deconvolution for passive millimeter-wave images
    Fang, Houzhang
    Shi, Yu
    Pan, Donghui
    Zhou, Gang
    SIGNAL PROCESSING, 2017, 138 : 182 - 194
  • [6] Blind image restoration with sparse priori regularization for passive millimeter-wave images
    Liu, Tingting
    Chen, Zengzhao
    Liu, Sanyan
    Zhang, Zhaoli
    Shu, Jiangbo
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2016, 40 : 58 - 66
  • [7] MULTIFRAME BLIND DECONVOLUTION OF PASSIVE MILLIMETER WAVE IMAGES USING VARIATIONAL DIRICHLET BLUR KERNEL ESTIMATION
    Mateos, Javier
    Lopez, Antonio
    Vega, Miguel
    Molina, Rafael
    Katsaggelos, Aggelos K.
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 2678 - 2682
  • [8] A soft double regularization approach to parametric blind image deconvolution
    Chen, L
    Yap, KH
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2005, 14 (05) : 624 - 633
  • [9] Parametric blind deconvolution of microscopic images: Further results
    Markham, J
    Conchello, JA
    THREE-DIMENSIONAL AND MULTIDIMENSIONAL MICROSCOPY: IMAGE ACQUISITION AND PROCESSING V, PROCEEDINGS OF, 1998, 3261 : 38 - 49
  • [10] Semantic Regularization for Blind image Deconvolution in Medical Images with extended sparseness
    Gowthami, S.
    Harikumar, R.
    2020 IEEE REGION 10 SYMPOSIUM (TENSYMP) - TECHNOLOGY FOR IMPACTFUL SUSTAINABLE DEVELOPMENT, 2020, : 847 - 850