Variational iteration method for Bratu-like equation arising in electrospinning

被引:73
|
作者
He, Ji-Huan [1 ,2 ]
Kong, Hai-Yan [1 ]
Chen, Rou-Xi [1 ]
Hu, Ming-sheng [3 ]
Chen, Qiao-ling [3 ]
机构
[1] Soochow Univ, Coll Text & Clothing Engn, Natl Engn Lab Modern Silk, Suzhou 215123, Peoples R China
[2] Soochow Univ, Nantong Text Inst, Nantong, Peoples R China
[3] Zhengzhou Normal Univ, Coll Informat Sci & Technol, Zhengzhou 450044, Peoples R China
基金
中国国家自然科学基金;
关键词
Variational iteration method; Analytical solution; Electrospinning; Vibration-electrospinning; Bubbfil spinning; ELECTRO-HYDRODYNAMIC MODEL; ASYMPTOTIC METHODS;
D O I
10.1016/j.carbpol.2014.01.044
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
This paper points out that the so called enhanced variational iteration method (Colantoni & Boubaker, 2014) for a nonlinear equation arising in electrospinning and vibration-electrospinning process is the standard variational iteration method. An effective algorithm using the variational iteration algorithm-II is suggested for Bratu-like equation arising in electrospinning. A suitable choice of initial guess results in a relatively accurate solution by one or few iteration. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:229 / 230
页数:2
相关论文
共 50 条
  • [1] Bratu-like equation arising in electrospinning process: A Green's function fixed-point iteration approach
    Kafri H.Q.
    Khuri S.A.
    Sayfy A.
    International Journal of Computing Science and Mathematics, 2017, 8 (04) : 364 - 373
  • [2] Bernstein and Gegenbauer-wavelet collocation methods for Bratu-like equations arising in electrospinning process
    Julee Shahni
    Randhir Singh
    Journal of Mathematical Chemistry, 2021, 59 : 2327 - 2343
  • [3] Bernstein and Gegenbauer-wavelet collocation methods for Bratu-like equations arising in electrospinning process
    Shahni, Julee
    Singh, Randhir
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2021, 59 (10) : 2327 - 2343
  • [4] An efficient computational approach for fractional Bratu's equation arising in electrospinning process
    Singh, Harendra
    Singh, Amit Kumar
    Pandey, Rajesh K.
    Kumar, Devendra
    Singh, Jagdev
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (13) : 10225 - 10238
  • [5] Approximate solution of a differential equation arising in astrophysics using the variational iteration method
    Dehghan, Mehdi
    Shakeri, Fatemeh
    NEW ASTRONOMY, 2008, 13 (01) : 53 - 59
  • [6] NUMERICAL SOLUTION OF BRATU-TYPE EQUATIONS BY THE VARIATIONAL ITERATION METHOD
    Batiha, B.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2010, 39 (01): : 23 - 29
  • [7] TAYLOR SERIES SOLUTION FOR FRACTAL BRATU-TYPE EQUATION ARISING IN ELECTROSPINNING PROCESS
    He, Chun-Hui
    Shen, Yue
    Ji, Fei-Yu
    He, Ji-Huan
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2020, 28 (01)
  • [8] Variational Iteration Method for Solving Initial and Boundary Value Problems of Bratu-type
    Noor, Muhammad Aslam
    Mohyud-Din, Syed Tauseef
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2008, 3 (01): : 89 - 99
  • [9] A Hybrid Variational Iteration Method for Blasius Equation
    Sajid, M.
    Abbas, Z.
    Ali, N.
    Javed, T.
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2015, 10 (01): : 223 - 229
  • [10] Variational Iteration Method for Solving Sivashinsky Equation
    Tolou, N.
    Ganji, D. D.
    Zolfaghari, H.
    ISND 2007: PROCEEDINGS OF THE 2007 INTERNATIONAL SYMPOSIUM ON NONLINEAR DYNAMICS, PTS 1-4, 2008, 96