A bound for Wilson's general theorem

被引:0
|
作者
Chang, YX [1 ]
机构
[1] No Jiaotong Univ, Math Inst, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
Wilson's general theorem; pairwise balanced design; PBD-closed;
D O I
10.1007/BF02876038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given any set K of positive integers and positive integer lambda, let c(K,lambda) denote the smallest integer such that v is an element of B(K,lambda) for every integer v greater than or equal to c(K,lambda) that satisfies the congruences lambda v(v-1)=0 (mod beta(K)) and lambda(v-1)=0 (mod alpha(K)). Let K-0 be an equivalent set of K, k and k* be the smallest and the largest integers in K-0. We prove that c(K,lambda) less than or equal to exp exp{Q(0)} where [GRAPHICS] p(K-0) = Pi(l is an element of K0) l and y = k* + k(k-1) + 1.
引用
收藏
页码:128 / 140
页数:13
相关论文
共 50 条