Spatio-temporal Tensor Multi-Task Learning for Precision fertilization

被引:0
|
作者
Zhang, Yu [1 ]
Liu, Tong [1 ]
Li, Yang [2 ]
Wang, Ruijing [3 ]
Huang, He [3 ]
Yang, Po [1 ]
机构
[1] Univ Sheffield, Dept Comp Sci, Sheffield, S Yorkshire, England
[2] Ant Data Ltd, Res & Dev, Liverpool, Merseyside, England
[3] Chinese Acad Sci, Inst Intelligent Machines, Hefei, Peoples R China
关键词
Precision fertilization; multi-task learning; spatio-temporal tensor; tensor decomposition; AGRICULTURE TECHNOLOGIES; DISEASE PROGRESSION; OPTIMIZATION; FUTURE;
D O I
10.1109/IUCC-CIT-DSCI-SMARTCNS55181.2021.00070
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Precision fertilization refers to the targeted variable fertilization technology adopted according to the variation of soil fertility on a certain area. Precise fertilization can balance soil nutrients, save fertilizer, reduce environmental pollution and increase food production. In this article, we propose a new multi-task learning (MTL) method, which is based on a tensor composed of farm data to effectively predict both amount and time of base fertilizer and topdressing. Specifically, we encode farm measurement data (e.g., climate data, soil information, etc.) into a three-dimensional tensor, and extract a set of interpretable temporal and spatial latent factors from the original data through tensor decomposition, and utilise latent factors as predictors to train a set of spatio-temporal prediction models. We conduct extensive experiments using data from SoilHealthDB. The experimental results show that the proposed method has advanced fertilization prediction accuracy and stability in terms of root mean square error.
引用
收藏
页码:398 / 405
页数:8
相关论文
共 50 条
  • [1] Spatio-Temporal Multi-Task Learning via Tensor Decomposition
    Xu, Jianpeng
    Zhou, Jiayu
    Tan, Pang-Ning
    Liu, Xi
    Luo, Lifeng
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2021, 33 (06) : 2764 - 2775
  • [2] AutoSTL: Automated Spatio-Temporal Multi-Task Learning
    Zhang, Zijian
    Zhao, Xiangyu
    Miao, Hao
    Zhang, Chunxu
    Zhao, Hongwei
    Zhang, Junbo
    [J]. THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 4, 2023, : 4902 - 4910
  • [3] Multi-Task Learning for Spatio-Temporal Event Forecasting
    Zhao, Liang
    Sun, Qian
    Ye, Jieping
    Chen, Feng
    Lu, Chang-Tien
    Ramakrishnan, Naren
    [J]. KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2015, : 1503 - 1512
  • [4] WISDOM: Weighted Incremental Spatio-Temporal Multi-Task Learning via Tensor Decomposition
    Xu, Jianpeng
    Zhou, Jiayu
    Pang-Ning Tan
    Liu, Xi
    Luo, Lifeng
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2016, : 522 - 531
  • [5] Unsupervised Learning of Spatio-Temporal Representation with Multi-Task Learning for Video Retrieval
    Kumar, Vidit
    [J]. 2022 NATIONAL CONFERENCE ON COMMUNICATIONS (NCC), 2022, : 118 - 123
  • [6] Spatio-Temporal Multi-Task Learning for Cardiac MRI Left Ventricle Quantification
    Vesal, Sulaiman
    Gu, Mingxuan
    Maier, Andreas
    Ravikumar, Nishant
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (07) : 2698 - 2709
  • [7] Deep Multi-Task Learning for Spatio-Temporal Incomplete Qualitative Event Forecasting
    Chowdhury, Tanmoy
    Gao, Yuyang
    Zhao, Liang
    [J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36 (12) : 7913 - 7926
  • [8] Distribution Preserving Multi-Task Regression for Spatio-Temporal Data
    Liu, Xi
    Tan, Pang-Ning
    Abraham, Zubin
    Luo, Lifeng
    Hatami, Pouyan
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2018, : 1134 - 1139
  • [9] SPATIO-TEMPORAL REPRESENTATION FOR FACE AUTHENTICATION BY USING MULTI-TASK LEARNING WITH HUMAN ATTRIBUTES
    Kim, Seong Tae
    Kim, Dae Hoe
    Ro, Yong Man
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 2996 - 3000
  • [10] Incomplete Label Multi-Task Deep Learning for Spatio-Temporal Event Subtype Forecasting
    Gao, Yuyang
    Zhao, Liang
    Wu, Lingfei
    Ye, Yanfang
    Xiong, Hui
    Yang, Chaowei
    [J]. THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 3638 - 3646