On Edge-Disjoint Spanning Trees in a Randomly Weighted Complete Graph

被引:3
|
作者
Frieze, Alan [1 ]
Johansson, Tony [2 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
[2] Uppsala Univ, Dept Math, S-75106 Uppsala, Sweden
来源
COMBINATORICS PROBABILITY & COMPUTING | 2018年 / 27卷 / 02期
关键词
RANDOM ASSIGNMENT PROBLEM; TRAVELING-SALESMAN; K-CORE; ZETA(2) LIMIT; CONNECTIVITY; LENGTHS; PROOF;
D O I
10.1017/S0963548317000426
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Assume that the edges of the complete graph K-n are given independent uniform [0,1] weights. We consider the expected minimum total weight mu(k) of k >= 2 edge-disjoint spanning trees. When k is large we show that mu(k) approximate to k(2). Most of the paper is concerned with the case k = 2. We show that mu(2) tends to an explicitly defined constant and that mu(2) approximate to 4.1704288....
引用
收藏
页码:228 / 244
页数:17
相关论文
共 50 条
  • [1] Edge-disjoint spanning trees in the line graph of hypercubes
    Qian, Yu
    Cheng, Baolei
    Fan, Jianxi
    Wang, Yifeng
    Jiang, Ruofan
    [J]. 2021 IEEE 32ND INTERNATIONAL CONFERENCE ON APPLICATION-SPECIFIC SYSTEMS, ARCHITECTURES AND PROCESSORS (ASAP 2021), 2021, : 61 - 64
  • [2] Edge-disjoint rainbow spanning trees in complete graphs
    Carraher, James M.
    Hartke, Stephen G.
    Horn, Paul
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2016, 57 : 71 - 84
  • [3] Edge-disjoint spanning trees and eigenvalues
    Liu, Qinghai
    Hong, Yanmei
    Lai, Hong-Jian
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 444 : 146 - 151
  • [4] A property on edge-disjoint spanning trees
    Lai, HJ
    Lai, HY
    Payan, C
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 1996, 17 (05) : 447 - 450
  • [5] On edge-disjoint spanning trees in hypercubes
    Barden, B
    Libeskind-Hadas, R
    Davis, J
    Williams, W
    [J]. INFORMATION PROCESSING LETTERS, 1999, 70 (01) : 13 - 16
  • [6] On edge-disjoint spanning trees in hypercubes
    Department of Computer Science, Harvey Mudd College, 301 E. 12th Street, Claremont, CA 91711, United States
    [J]. Inf. Process. Lett., 1 (13-16):
  • [7] Edge-disjoint spanning trees and the number of maximum state circles of a graph
    Xiaoli Ma
    Baoyindureng Wu
    Xian’an Jin
    [J]. Journal of Combinatorial Optimization, 2018, 35 : 997 - 1008
  • [8] Edge-disjoint spanning trees and the number of maximum state circles of a graph
    Ma, Xiaoli
    Wu, Baoyindureng
    Jin, Xian'an
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2018, 35 (04) : 997 - 1008
  • [9] Edge-connectivity and edge-disjoint spanning trees
    Catlin, Paul A.
    Lai, Hong-Jian
    Shao, Yehong
    [J]. DISCRETE MATHEMATICS, 2009, 309 (05) : 1033 - 1040
  • [10] CONNECTIVITY AND EDGE-DISJOINT SPANNING-TREES
    GUSFIELD, D
    [J]. INFORMATION PROCESSING LETTERS, 1983, 16 (02) : 87 - 89