Maximum likelihood estimation;
Lognormal distribution;
Minimum distance estimation;
D O I:
10.1080/03610926.2012.737493
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
In this article, we implement the minimum density power divergence estimation for estimating the parameters of the lognormal density. We compare the minimum density power divergence estimator (MDPDE) and the maximum likelihood estimator (MLE) in terms of robustness and asymptotic distribution. The simulations and an example indicate that the MDPDE is less biased than MLE and is as good as MLE in terms of the mean square error under various distributional situations.
机构:
Indian Inst Technol Kanpur, Dept Math & Stat, Kanpur, India
Indian Inst Technol Kanpur, Dept Math & Stat, Kanpur 208016, IndiaIndian Inst Technol Kanpur, Dept Math & Stat, Kanpur, India
机构:
Indian Stat Inst, Interdisciplinary Stat Res Unit, 203 BT Rd, Kolkata 700108, W Bengal, IndiaIndian Stat Inst, Interdisciplinary Stat Res Unit, 203 BT Rd, Kolkata 700108, W Bengal, India
Ghosh, Abhik
Basu, Ayanendranath
论文数: 0引用数: 0
h-index: 0
机构:
Indian Stat Inst, Interdisciplinary Stat Res Unit, 203 BT Rd, Kolkata 700108, W Bengal, IndiaIndian Stat Inst, Interdisciplinary Stat Res Unit, 203 BT Rd, Kolkata 700108, W Bengal, India