Kernel-Based Methods for Bandit Convex Optimization

被引:67
|
作者
Bubeck, Sebastien [1 ]
Lee, Yin Tat [1 ]
Eldan, Ronen [2 ]
机构
[1] Microsoft Res, Cambridge, MA 02142 USA
[2] Weizmann Inst Sci, Rehovot, Israel
关键词
multi-armed bandit; online learning; convex optimization;
D O I
10.1145/3055399.3055403
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the adversarial convex bandit problem and we build the first poly(T)-time algorithm with poly(n)root T-regret for this problem. To do so we introduce three new ideas in the derivative-free optimization literature: (i) kernel methods, (ii) a generalization of Bernoulli convolutions, and (iii) a new annealing schedule for exponential weights (with increasing learning rate). The basic version of our algorithm achieves (O) over tilde (n(9.5)root T)-regret, and we show that a simple variant of this algorithm can be run in poly(n log(T))-time per step at the cost of an additional poly(n)T degrees((1)) factor in the regret. These results improve upon the (O) over tilde (n(11)root T)-regret and exp(poly(T))-time result of the first two authors, and the log(T)(poly(n))root T-regret and log(T)(poly(n))-time result of Hazan and Li. Furthermore we conjecture that another variant of the algorithm could achieve (O) over tilde (n(1.5)root T)-regret, and moreover that this regret is unimprovable (the current best lower bound being Omega(n root T)and it is achieved with linear functions). For the simpler situation of zeroth order stochastic convex optimization this corresponds to the conjecture that the optimal query complexity is of order n(3)/epsilon(2).
引用
收藏
页码:72 / 85
页数:14
相关论文
共 50 条
  • [1] Kernel-based Methods for Bandit Convex Optimization
    Bubeck, Sebastien
    Eldan, Ronen
    Lee, Yin Tat
    [J]. JOURNAL OF THE ACM, 2021, 68 (04)
  • [2] Implementation of Infeasible Kernel-Based InteriorPoint Methods for Linearly Constrained Convex Optimization
    Wu, L.
    Li, K.
    Wang, X. D.
    Shao, L. H.
    Zhao, A. N.
    [J]. PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON ELECTRICAL, AUTOMATION AND MECHANICAL ENGINEERING (EAME 2015), 2015, 13 : 654 - 657
  • [3] Kernel Parameter Optimization for Kernel-based LDA methods
    Huang, Jian
    Chen, Xiaoming
    Yuen, P. C.
    Zhang, Jun
    Chen, W. S.
    Lai, J. H.
    [J]. 2008 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-8, 2008, : 3840 - 3846
  • [4] Fully adaptive kernel-based methods
    Ling, Leevan
    Chiu, Sung Nok
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2018, 114 (04) : 454 - 467
  • [5] Kernel-Based Methods for Hypothesis Testing
    Harchaoui, Zaid
    Bach, Francis
    Cappe, Olivier
    Moulines, Eric
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2013, 30 (04) : 87 - 97
  • [6] Kernel-based methods and function approximation
    Baudat, G
    Anouar, F
    [J]. IJCNN'01: INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2001, : 1244 - 1249
  • [7] Kernel Map Compression for Speeding the Execution of Kernel-Based Methods
    Arif, Omar
    Vela, Patricio A.
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2011, 22 (06): : 870 - 879
  • [8] Kernel Parameter Optimization in Stretched Kernel-Based Fuzzy Clustering
    Lu, Chunhong
    Zhu, Zhaomin
    Gu, Xiaofeng
    [J]. PARTIALLY SUPERVISED LEARNING, PSL 2013, 2013, 8193 : 49 - 57
  • [9] Optimistic Bandit Convex Optimization
    Mohri, Mehryar
    Yang, Scott
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [10] Kernel-based methods for hyperspectral image classification
    Camps-Valls, G
    Bruzzone, L
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (06): : 1351 - 1362