Efficient document image binarization using heterogeneous computing and parameter tuning

被引:7
|
作者
Westphal, Florian [1 ]
Grahn, Hakan [1 ]
Lavesson, Niklas [1 ]
机构
[1] Blekinge Inst Technol, Dept Comp Sci & Engn, Karlskrona, Sweden
关键词
Image binarization; Heterogeneous computing; Automatic parameter tuning; Historical documents; ENERGY;
D O I
10.1007/s10032-017-0293-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the context of historical document analysis, image binarization is a first important step, which separates foreground from background, despite common image degradations, such as faded ink, stains, or bleed-through. Fast binarization has great significance when analyzing vast archives of document images, since even small inefficiencies can quickly accumulate to years of wasted execution time. Therefore, efficient binarization is especially relevant to companies and government institutions, who want to analyze their large collections of document images. The main challenge with this is to speed up the execution performance without affecting the binarization performance. We modify a state-of-the-art binarization algorithm and achieve on average a 3.5 times faster execution performance by correctly mapping this algorithm to a heterogeneous platform, consisting of a CPU and a GPU. Our proposed parameter tuning algorithm additionally improves the execution time for parameter tuning by a factor of 1.7, compared to previous parameter tuning algorithms. We see that for the chosen algorithm, machine learning-based parameter tuning improves the execution performance more than heterogeneous computing, when comparing absolute execution times.
引用
收藏
页码:41 / 58
页数:18
相关论文
共 50 条
  • [1] Efficient document image binarization using heterogeneous computing and parameter tuning
    Florian Westphal
    Håkan Grahn
    Niklas Lavesson
    [J]. International Journal on Document Analysis and Recognition (IJDAR), 2018, 21 : 41 - 58
  • [2] Parameter tuning for document image binarization using a racing algorithm
    Mesquita, Rafael G.
    Silva, Ricardo M. A.
    Mello, Carlos A. B.
    Miranda, Pericles B. C.
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (05) : 2593 - 2603
  • [3] Document binarization with automatic parameter tuning
    Nicholas R. Howe
    [J]. International Journal on Document Analysis and Recognition (IJDAR), 2013, 16 : 247 - 258
  • [4] Document binarization with automatic parameter tuning
    Howe, Nicholas R.
    [J]. INTERNATIONAL JOURNAL ON DOCUMENT ANALYSIS AND RECOGNITION, 2013, 16 (03) : 247 - 258
  • [5] Erratum to: Document binarization with automatic parameter tuning
    Nicholas R. Howe
    [J]. International Journal on Document Analysis and Recognition (IJDAR), 2013, 16 (3): : 259 - 259
  • [6] Automatic Parameter Tuning of K-Means Algorithm for Document Binarization
    Gattal, Abdeljalil
    Abbas, Faycel
    Laouar, Mohamed Ridda
    [J]. PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND NEW TECHNOLOGIES (ICSENT '18), 2018,
  • [7] An Efficient Transformer-CNN Network for Document Image Binarization
    Zhang, Lina
    Wang, Kaiyuan
    Wan, Yi
    [J]. ELECTRONICS, 2024, 13 (12)
  • [8] Document Image Binarization Process
    Prodan, Marcel
    Boiangiu, Costin-Anton
    [J]. BRAIN-BROAD RESEARCH IN ARTIFICIAL INTELLIGENCE AND NEUROSCIENCE, 2023, 14 (02): : 93 - 114
  • [9] Historical document image binarization
    Mello, Carlos A. B.
    Oliveira, Adriano L. I.
    Sanchez, Angel
    [J]. VISAPP 2008: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON COMPUTER VISION THEORY AND APPLICATIONS, VOL 1, 2008, : 108 - 113
  • [10] Adaptive document image binarization
    Sauvola, J
    Pietikäinen, M
    [J]. PATTERN RECOGNITION, 2000, 33 (02) : 225 - 236