Zuotin, a DnaJ molecular chaperone, stimulates cap-independent translation in yeast

被引:5
|
作者
Raychaudhuri, Santanu [1 ]
Fontanes, Vanessa [1 ]
Banerjee, Rajeev [1 ]
Bernavichute, Yana [1 ]
Dasgupta, Asirn [1 ]
机构
[1] Univ Calif Los Angeles, Dept Microbiol Immunol & Mol Genet, UCLA Sch Med, Los Angeles, CA 90095 USA
关键词
cap-independent translation; IRES-mediated translation; yeast; TFIID 5'UTR; zuotin; DnaJ molecular chaperone; yeast homolog of mammalian HSP-40;
D O I
10.1016/j.bbrc.2006.09.124
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A small inhibitor RNA (IRNA) isolated from yeast has previously been shown to efficiently block poliovirus and hepatitis C virus IRES-mediated translation by sequestering mammalian RNA-binding (transacting) factors that play important roles in cap-independent translation. Here we have investigated the IRNA-binding proteins that might be involved in cap-independent translation in the yeast Saccharomyces cerevisiae. We have identified Zuotin, a DnaJ chaperone protein similar to mammalian HSP-40 chaperone, which interacts strongly with IRNA. Using ZUO1-deleted S. cerevisiae, we demonstrate a preferential requirement of Zuo1p for cap-independent translation mediated by the 5' untranslated region of the yeast TFIID mRNA. Further studies using zuo1 Delta S. cerevisiae complemented with various Zuo1p mutants indicate that the DnaJ domain of Zuo1p, known to influence its interaction with HSP-70, significantly affects cap-independent translation. These results demonstrate for the first time a role for an established chaperone protein in cap-independent translation of a cellular mRNA. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:788 / 795
页数:8
相关论文
共 50 条
  • [1] Zuotin, a ribosome-associated DnaJ molecular chaperone
    Yan, W
    Schilke, B
    Pfund, C
    Walter, W
    Kim, SW
    Craig, EA
    [J]. EMBO JOURNAL, 1998, 17 (16): : 4809 - 4817
  • [2] Human cytomegalovirus pTRS1 stimulates cap-independent translation
    Vincent, Heather A.
    Ziehr, Benjamin
    Lenarcic, Erik M.
    Moorman, Nathaniel J.
    [J]. VIROLOGY, 2019, 537 : 246 - 253
  • [3] Cap-independent translation is required for starvation-induced differentiation in yeast
    Gilbert, Wendy V.
    Zhou, Kaihong
    Butler, Tamira K.
    Doudna, Jennifer A.
    [J]. SCIENCE, 2007, 317 (5842) : 1224 - 1227
  • [4] Cap-Independent Translation in Hematological Malignancies
    Horvilleur, Emilie
    Wilson, Lindsay A.
    Bastide, Amandine
    Pineiro, David
    Poeyry, Tuija A. A.
    Willis, Anne E.
    [J]. FRONTIERS IN ONCOLOGY, 2015, 5
  • [5] Cap-Independent Protein Translation in Hematopoiesis
    Mazzola, Michael
    Zhao, Ting
    Gustafsson, Karin
    Kristiansen, Trine
    Schiroli, Giulia
    Milosevic, Jelena
    Kfoury, Youmna
    Fukushima, Tsuyoshi
    Kiem, Anna
    Sharda, Azeem
    Kato, Hiroki
    Sykes, David
    Ivanov, Pavel
    Sankaran, Vijay G.
    Scadden, David T.
    [J]. BLOOD, 2022, 140 : 1983 - 1984
  • [6] Cap-independent translation of plant viral RNAs
    Pettit Kneller, Elizabeth L.
    Rakotondrafara, Aurelie M.
    Miller, W. Allen
    [J]. VIRUS RESEARCH, 2006, 119 (01) : 63 - 75
  • [7] Cap-independent translation in adenovirus infected cells
    Schneider, RJ
    [J]. CAP-INDEPENDENT TRANSLATION, 1995, 203 : 117 - 129
  • [8] Cap-dependent and cap-independent translation in eukaryotic systems
    Merrick, WC
    [J]. GENE, 2004, 332 : 1 - 11
  • [9] Cap-Independent Translation: What's in a Name?
    Shatsky, Ivan N.
    Terenin, Ilya M.
    Smirnova, Victoria V.
    Andreev, Dmitri E.
    [J]. TRENDS IN BIOCHEMICAL SCIENCES, 2018, 43 (11) : 882 - 895
  • [10] Cap-Independent mRNA Translation in Germ Cells
    Keiper, Brett D.
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (01):