Direct Synthesis of Large-Scale WTe2 Thin Films with Low Thermal Conductivity

被引:98
|
作者
Zhou, Yu [1 ,2 ]
Jang, Hyejin [3 ,4 ]
Woods, John M. [1 ,2 ]
Xie, Yujun [1 ,2 ,5 ]
Kumaravadivel, Piranavan [1 ,2 ]
Pan, Grace A. [5 ,6 ]
Liu, Jingbei [1 ]
Liu, Yanhui [1 ]
Cahill, David G. [3 ,4 ]
Cha, Judy J. [1 ,2 ,5 ]
机构
[1] Yale Univ, Dept Mech Engn & Mat Sci, New Haven, CT 06511 USA
[2] Yale Univ, Energy Sci Inst, Yale West Campus, West Haven, CT 06525 USA
[3] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA
[4] Univ Illinois, Mat Res Lab, Urbana, IL 61801 USA
[5] Yale Univ, Ctr Res Interface Struct & Phenomena, New Haven, CT 06511 USA
[6] Yale Univ, Dept Phys, New Haven, CT 06511 USA
基金
美国国家科学基金会;
关键词
TRANSITION-METAL DICHALCOGENIDES; STANDARD MOLAR ENTHALPY; TUNGSTEN DITELLURIDE WTE2; THERMODYNAMIC PROPERTIES; MONOLAYER MOS2; SUPERCONDUCTIVITY; SEMIMETAL; HETEROSTRUCTURES; NANORIBBONS; MOLYBDENUM;
D O I
10.1002/adfm.201605928
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Large-scale, polycrystalline WTe2 thin films are synthesized by atmospheric chemical vapor reaction of W metal films with Te vapor catalyzed by H2Te intermediates, paving a way to understanding the synthesis mechanism for low bonding energy tellurides and toward synthesis of single-crystalline telluride nanoflakes. Through-plane and in-plane thermal conductivities of single-crystal WTe2 flakes and polycrystalline WTe2 thin films are measured for the first time. Nanoscale grains and disorder in WTe2 thin films suppress the in-plane thermal conductivity of WTe2 greatly, which is at least 7.5 times lower than that of the single-crystalline flakes.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Direct Growth of Low Thermal Conductivity WTe2 Nanocrystalline Films on W Films
    Yu, Zhisong
    Tao, Rong
    Guo, Jin
    Feng, Shiyi
    Wang, Yue
    NANOMATERIALS, 2024, 14 (05)
  • [2] High Current Density and Low Thermal Conductivity of Atomically Thin Semimetallic WTe2
    Mleczko, Michal J.
    Xu, Runjie Lily
    Okabe, Kye
    Kuo, Hsueh-Hui
    Fisher, Ian R.
    Wong, H. -S. Philip
    Nishi, Yoshio
    Pop, Eric
    ACS NANO, 2016, 10 (08) : 7507 - 7514
  • [3] Tunable Plasmons in Large-Area WTe2 Thin Films
    Wang, Chong
    Sun, Yangye
    Huang, Shenyang
    Xing, Qiaoxia
    Zhang, Guowei
    Song, Chaoyu
    Wang, Fanjie
    Xie, Yuangang
    Lei, Yuchen
    Sun, Zhengzong
    Yan, Hugen
    PHYSICAL REVIEW APPLIED, 2021, 15 (01)
  • [4] Observation of Shubnikov-de Haas Oscillations in Large-Scale Weyl Semimetal WTe2 Films
    陈业全
    陈勇达
    宁纪爱
    陈立明
    庄文卓
    何亮
    张荣
    徐永兵
    王学锋
    Chinese Physics Letters, 2020, (01) : 80 - 86
  • [5] Observation of Shubnikov-de Haas Oscillations in Large-Scale Weyl Semimetal WTe2 Films
    Chen, Yequan
    Chen, Yongda
    Ning, Jiai
    Chen, Liming
    Zhuang, Wenzhuo
    He, Liang
    Zhang, Rong
    Xu, Yongbing
    Wang, Xuefeng
    CHINESE PHYSICS LETTERS, 2020, 37 (01)
  • [6] Strong anisotropic thermal conductivity of monolayer WTe2
    Ma, Jinlong
    Chen, Yani
    Han, Zheng
    Li, Wu
    2D MATERIALS, 2016, 3 (04):
  • [7] Quantum oscillations of thermopower in WTe2 thin films
    Bi, Ran
    Feng, Zili
    Li, Xinqi
    Zhao, Jiaji
    Fan, Juewen
    Shi, Youguo
    Yu, Dapeng
    Wu, Xiaosong
    PHYSICAL REVIEW B, 2019, 100 (23)
  • [8] Self-Powered Broadband Photodetectors Based on Large-Scale Continuous Films of Weyl Semimetal WTe2
    Feng, Yao
    Zhang, Yinuo
    Zhang, Youqi
    Miao, Xuecen
    Lin, Yunan
    Min, Tai
    Pan, Yi
    ACS APPLIED OPTICAL MATERIALS, 2024, 2 (02): : 333 - 340
  • [9] Direct Evidence for Charge Compensation-Induced Large Magnetoresistance in Thin WTe2
    Wang, Yaojia
    Wang, Lizheng
    Liu, Xiaowei
    Wu, Heng
    Wang, Pengfei
    Yan, Dayu
    Cheng, Bin
    Shi, Youguo
    Watanabe, Kenji
    Taniguchi, Takashi
    Liang, Shi-Jun
    Miao, Feng
    NANO LETTERS, 2019, 19 (06) : 3969 - 3975
  • [10] Substrate Effects on Growth Dynamics of WTe2 Thin films
    Hynek, David J.
    Onder, Elifnaz
    Hart, James L.
    Jin, Gangtae
    Wang, Mengjing
    Singhania, Raivat M.
    Davis, Benjamin
    Strandwitz, Nicholas C.
    Cha, Judy J.
    ADVANCED MATERIALS INTERFACES, 2023, 10 (11)