Hyperspectral image classification via compact-dictionary-based sparse representation

被引:2
|
作者
Cao, Chunhong [1 ]
Deng, Liu [1 ]
Duan, Wei [1 ]
Xiao, Fen [1 ]
Yang, WanChun [1 ]
Hu, Kai [1 ]
机构
[1] Xiangtan Univ, Minist Educ, Key Lab Intelligent Comp & Informat Proc, Xiangtan, Peoples R China
基金
中国国家自然科学基金;
关键词
Classification; Compact dictionary; Hyperspectral image; Sparse representation; COLLABORATIVE REPRESENTATION; KERNEL;
D O I
10.1007/s11042-018-6885-5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a compact-dictionary-based sparse representation (CDSR) method is proposed for hyperspectral image (HSI) classification. The proposed dictionary in CDSR is dynamically generated according to the spatial and spectral context of each pixel. It can effectively shrink the decision range for classification, and reduce the computational burden since the compact dictionary is composed of the classes correlated with the target pixel in terms of spatial location and spectral information. In order to obtain better spatial context information, a spatial location expanding strategy is designed for spreading local explicit label information to a wider region. Experimental results demonstrate the effectiveness and superiority of the proposed method when compared with some widely used HSI classification approaches.
引用
收藏
页码:15011 / 15031
页数:21
相关论文
共 50 条
  • [1] Hyperspectral image classification via compact-dictionary-based sparse representation
    Chunhong Cao
    Liu Deng
    Wei Duan
    Fen Xiao
    WanChun Yang
    Kai Hu
    [J]. Multimedia Tools and Applications, 2019, 78 : 15011 - 15031
  • [2] Hyperspectral Image Classification Using Dictionary-Based Sparse Representation
    Chen, Yi
    Nasrabadi, Nasser M.
    Tran, Trac D.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (10): : 3973 - 3985
  • [3] Dictionary-Based, Clustered Sparse Representation for Hyperspectral Image Classification
    Qin, Zhen-tao
    Yang, Wu-nian
    Yang, Ru
    Zhao, Xiang-yu
    Yang, Teng-jiao
    [J]. JOURNAL OF SPECTROSCOPY, 2015, 2015 : 1 - 6
  • [4] SPARSE REPRESENTATION BASED HYPERSPECTRAL IMAGERY CLASSIFICATION VIA EXPANDED DICTIONARY
    He, Lin
    Ruan, Weitong
    Li, Yuanqing
    [J]. 2012 4TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING (WHISPERS), 2012,
  • [5] A Deep Sparse Representation with Random Dictionary for Hyperspectral Image Classification
    Xia, Tian
    Cheng, Chunbo
    Cui, Wenjing
    [J]. INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2023, 21 (05)
  • [6] HYPERSPECTRAL IMAGE CLASSIFICATION BY SPARSE REPRESENTATION WITH NONLOCAL ADAPTIVE DICTIONARY
    Long, Yi
    Li, Heng-Chao
    [J]. 2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 1721 - 1724
  • [7] Hyperspectral Image Classification via Kernel Sparse Representation
    Chen, Yi
    Nasrabadi, Nasser M.
    Tran, Trac D.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (01): : 217 - 231
  • [8] HYPERSPECTRAL IMAGE CLASSIFICATION VIA KERNEL SPARSE REPRESENTATION
    Chen, Yi
    Nasrabadi, Nasser M.
    Tran, Trac D.
    [J]. 2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011, : 1233 - 1236
  • [9] HYPERSPECTRAL IMAGE CLASSIFICATION VIA JOINT SPARSE REPRESENTATION
    Hsu, Pai-Hui
    Cheng, Ying-Ying
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 2997 - 3000
  • [10] Sparse representation-based hyperspectral image classification
    Hairong Wang
    Turgay Celik
    [J]. Signal, Image and Video Processing, 2018, 12 : 1009 - 1017