Homological dimensions of modules of holomorphic functions on submanifolds of Stein manifolds

被引:0
|
作者
Pirkovskii, A. Yu. [1 ]
机构
[1] Natl Res Univ Higher Sch Econ, Fac Math, Moscow 117312, Russia
基金
俄罗斯基础研究基金会;
关键词
Frechet algebra; Frechet module; Homological dimension; Stein manifold; DEN BERGH DUALITY; QUOTIENT-SPACES; POWER-SERIES; ALGEBRAS; COHOMOLOGY; SUBSPACES;
D O I
10.1016/j.jfa.2014.03.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a Stein manifold, and let Y subset of X be a closed complex submanifold. Denote by O(X) the algebra of holomorphic functions on X. We show that the weak (i.e., flat) homological dimension of O(Y) as a Frechet O(X)-module equals the codimension of Y in X. In the case where X and Y are of Liouville type, the same formula is proved for the projective homological dimension of O(Y) over O(X). On the other hand, we show that if X is of Liouville type and Y is hyperconvex, then the projective homological dimension of O(Y) over O(X) equals the dimension of X. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:6663 / 6683
页数:21
相关论文
共 50 条
  • [1] Noncritical holomorphic functions on Stein manifolds
    Forstneric, F
    ACTA MATHEMATICA, 2003, 191 (02) : 143 - 189
  • [2] Holomorphic convexity and Carleman approximation by entire functions on Stein manifolds
    Per Erik Manne
    Erlend Fornæss Wold
    Nils Øvrelid
    Mathematische Annalen, 2011, 351 : 571 - 585
  • [3] Holomorphic convexity and Carleman approximation by entire functions on Stein manifolds
    Manne, Per Erik
    Wold, Erlend Fornaess
    Ovrelid, Nils
    MATHEMATISCHE ANNALEN, 2011, 351 (03) : 571 - 585
  • [4] Holomorphic functions of slow growth on coverings of pseudoconvex domains in Stein manifolds
    Brudnyi, Alexander
    COMPOSITIO MATHEMATICA, 2006, 142 (04) : 1018 - 1038
  • [5] Homological dimensions of rigid modules
    Zargar, Majid Rahro
    Celikbas, Olgur
    Gheibi, Mohsen
    Sadeghi, Arash
    KYOTO JOURNAL OF MATHEMATICS, 2018, 58 (03) : 639 - 669
  • [6] THE HOMOLOGICAL DIMENSIONS OF SIMPLE MODULES
    DING, NQ
    CHEN, JL
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1993, 48 (02) : 265 - 274
  • [7] Holomorphic submersions from Stein manifolds
    Forstneric, F
    ANNALES DE L INSTITUT FOURIER, 2004, 54 (06) : 1913 - +
  • [8] Dicritical holomorphic flows on Stein manifolds
    César Camacho
    Bruno Scárdua
    Archiv der Mathematik, 2007, 89 : 339 - 349
  • [9] Dicritical holomorphic flows on Stein manifolds
    Camacho, Cesar
    Scardua, Bruno
    ARCHIV DER MATHEMATIK, 2007, 89 (04) : 339 - 349
  • [10] On algebraically coisotropic submanifolds of holomorphic symplectic manifolds
    Amerik, Ekaterina
    Campana, Frederic
    EPIJOURNAL DE GEOMETRIE ALGEBRIQUE, 2023, 2023