On distortion under quasiconformal mapping

被引:1
|
作者
Vasil'ev, A [1 ]
机构
[1] Univ Tecn Federico Santa Maria, Valparaiso, Chile
关键词
quasiconformal mapping; conformal modulus; extremal partition; Riemann surface; extremal problem;
D O I
10.1216/rmjm/1181069910
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the paper we study the range of the system of functionals (\f(Z(1))\, \f(z(2))\) over the class of K-quasiconformal homeomorphisms of the Riemann sphere with standard three point normalization f(0) = 0, f(1) = 1, f(infinity) = infinity, and for different real values of z(1) and z(2). Extremal functions are given in terms of the complex dilatation dependent only on z(1), z(2). As a corollary, we derive some sharp estimates for the functional \f(z(2))\ +/- \f(z(1))\ and \f(z(2)) +/- f(z(1))\. The main tool of the proofs is the extremal partition of a Riemann surface by doubly connected domains.
引用
收藏
页码:347 / 370
页数:24
相关论文
共 50 条