The Poincare problem, algebraic integrability and dicritical divisors

被引:12
|
作者
Galindo, C. [1 ,2 ]
Monserrat, F. [3 ]
机构
[1] Univ Jaume 1, Inst Univ Matemat & Aplicac Castellon, Castellon de La Plana 12071, Spain
[2] Univ Jaume 1, Dept Matemat, Castellon de La Plana 12071, Spain
[3] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, Valencia 46022, Spain
关键词
INVARIANT CURVES; HYPERSURFACE SOLUTIONS; VECTOR-FIELDS; LIMIT-CYCLES; FOLIATIONS; VARIETIES; SURFACES; BOUNDS;
D O I
10.1016/j.jde.2014.02.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We solve the Poincare problem for plane foliations with only one dicritical divisor. Moreover, in this case, we give a simple algorithm that decides whether a foliation has a rational first integral and computes it in the affirmative case. We also provide an algorithm to compute a rational first integral of prefixed genus g 1 of any type of plane foliation F. When the number of dicritical divisors dic(F) is larger than 2, this algorithm depends on suitable families of invariant curves. When dic(F) =2, it proves that the degree of the rational first integral can be bounded only in terms of g, the degree of F. and the local analytic type of the dicritical singularities of F. (c) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:3614 / 3633
页数:20
相关论文
共 50 条