Generating landslide density heatmaps for rapid detection using open-access satellite radar data in Google Earth Engine

被引:26
|
作者
Handwerger, Alexander L. [1 ,2 ]
Huang, Mong-Han [3 ]
Jones, Shannan Y. [3 ]
Amatya, Pukar [4 ,5 ,6 ]
Kerner, Hannah R. [7 ]
Kirschbaum, Dalia B. [6 ]
机构
[1] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA 90095 USA
[2] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA
[3] Univ Maryland, Dept Geol, College Pk, MD 20742 USA
[4] Univ Maryland Baltimore Cty, Baltimore, MD 21228 USA
[5] Goddard Earth Sci Technol & Res II, Baltimore, MD USA
[6] NASA, Hydrol Sci Lab, Goddard Space Flight Ctr, Greenbelt, MD USA
[7] Univ Maryland, Dept Geog, College Pk, MD 20742 USA
关键词
GEOMORPHOLOGICAL FEATURES; GORKHA EARTHQUAKE; DEFORMATION; DYNAMICS; IMAGERY; HAZARD;
D O I
10.5194/nhess-22-753-2022
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Rapid detection of landslides is critical for emergency response, disaster mitigation, and improving our understanding of landslide dynamics. Satellite-based synthetic aperture radar (SAR) can be used to detect landslides, often within days of a triggering event, because it penetrates clouds, operates day and night, and is regularly acquired worldwide. Here we present a SAR backscatter change approach in the cloud-based Google Earth Engine (GEE) that uses multi-temporal stacks of freely available data from the Copernicus Sentinel-1 satellites to generate landslide density heatmaps for rapid detection. We test our GEE-based approach on multiple recent rainfall- and earthquake-triggered landslide events. Our ability to detect surface change from landslides generally improves with the total number of SAR images acquired before and after a landslide event, by combining data from both ascending and descending satellite acquisition geometries and applying topographic masks to remove flat areas unlikely to experience landslides. Importantly, our GEE approach does not require downloading a large volume of data to a local system or specialized processing software, which allows the broader hazard and landslide community to utilize and advance these state-of-the-art remote sensing data for improved situational awareness of landslide hazards.
引用
收藏
页码:753 / 773
页数:21
相关论文
共 50 条
  • [1] Optimization of Open-Access Optical and Radar Satellite Data in Google Earth Engine for Oil Palm Mapping in the Muda River Basin, Malaysia
    Zeng, Ju
    Tan, Mou Leong
    Tew, Yi Lin
    Zhang, Fei
    Wang, Tao
    Samat, Narimah
    Tangang, Fredolin
    Yusop, Zulkifli
    AGRICULTURE-BASEL, 2022, 12 (09):
  • [2] Large-scale probabilistic identification of boreal peatlands using Google Earth Engine, open-access satellite data, and machine learning
    Delancey, Evan Ross
    Kariyeva, Jahan
    Bried, Jason T.
    Hird, Jennifer N.
    PLOS ONE, 2019, 14 (06):
  • [3] Google Earth Engine, Open-Access Satellite Data, and Machine Learning in Support of Large-Area Probabilistic Wetland Mapping
    Hird, Jennifer N.
    DeLancey, Evan R.
    McDermid, Gregory J.
    Kariyeva, Jahan
    REMOTE SENSING, 2017, 9 (12)
  • [4] Landslide Detection in Google Earth Engine Using Deep Learning Methods
    Jalan, Punit R.
    Nanda, Aishwarya
    Martha, Tapas R.
    Das, Iswar Chandra
    Sreenivas, K.
    Chauhan, Prakash
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2024, : 1155 - 1166
  • [5] Cemetery Detection Using Satellite Images in Google Earth Engine
    Rodrigo Suarez, Ranyart
    Villasenor, Elio
    PROCEEDINGS OF THE 2021 XXIII IEEE INTERNATIONAL AUTUMN MEETING ON POWER, ELECTRONICS AND COMPUTING (ROPEC 2021), 2021,
  • [6] Automatic detection of landslide impact areas using Google Earth Engine
    Yang, Yu-En
    Yu, Teng-To
    Chen, Chun-Yuan
    TERRESTRIAL ATMOSPHERIC AND OCEANIC SCIENCES, 2024, 35 (01):
  • [7] Rapid multispectral data sampling using Google Earth Engine
    Brooke, Sam A. S.
    D'Arcy, Mitch
    Mason, Philippa J.
    Whittaker, Alexander C.
    COMPUTERS & GEOSCIENCES, 2020, 135
  • [8] Evapotranspiration determination with satellite and reanalysis data using Google Earth Engine
    Degano, Maria Florencia
    Rivas, Raul Eduardo
    Bayala, Martin Ignacio
    TECNOLOGIA Y CIENCIAS DEL AGUA, 2024, 15 (04) : 137 - 193
  • [9] Generating intra-year metrics of wildfire progression using multiple open-access satellite data streams
    Crowley, Morgan A.
    Cardille, Jeffrey A.
    White, Joanne C.
    Wulder, Michael A.
    REMOTE SENSING OF ENVIRONMENT, 2019, 232
  • [10] Modeling of tree heights in forest ecosystems using optical, radar, laser altimeter satellite data, and auxiliary on Google Earth Engine Platform
    Ozdemir, Eren Gursoy
    Zengin, Tarik Utku
    Gulec, Halit Abdullah
    GEOMATIK, 2024, 9 (02): : 259 - 268