A collaborative decomposition-based evolutionary algorithm integrating normal and penalty-based boundary intersection methods for many-objective optimization

被引:7
|
作者
Wu, Yu [1 ]
Wei, Jianle [1 ]
Ying, Weiqin [1 ,2 ]
Lan, Yanqi [2 ]
Cui, Zhen [1 ]
Wang, Zhenyu [2 ]
机构
[1] Guangzhou Univ, Sch Comp Sci & Cyber Engn, Guangzhou 510006, Peoples R China
[2] South China Univ Technol, Sch Software Engn, Guangzhou 510006, Peoples R China
关键词
many-objective optimization; evolutionary algorithms; decomposition penalty-based boundary intersection; normal boundary intersection; PARETO FRONTS; MOEA/D;
D O I
10.1016/j.ins.2022.10.136
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Decomposition-based evolutionary algorithms have recently become fairly popular for many-objective optimization owing to their excellent selection pressure. However, existing decomposition methods are still quite sensitive to the various shapes of the frontiers of many-objective optimization problems (MaOPs). On the one hand, the penalty-based boundary intersection (PBI) method is incapable of acquiring uniform frontiers for MaOPs with very convex frontiers due to the radial distribution of the reference lines. On the other hand, the parallel reference lines of the normal boundary intersection (NBI) method often result in poor diversity for MaOPs with concave frontiers because of under-sampling near the boundaries. In this paper, a collaborative decomposition (CoD) method is first proposed to integrate the advantages of the PBI and NBI methods to overcome their respective disadvantages. This method inherits the NBI-style Tchebycheff function as a convergence measure to improve the convergence and uniformity of the distribution of the PBI method. Moreover, this method also adaptively tunes the extent to which an NBI reference line is rotated towards a PBI reference line for every boundary subproblem to enhance the diversity of the distribution of the NBI method. Furthermore, a CoD-based evolutionary algorithm (CoDEA) is presented for many-objective optimization. A CoD-based ranking strategy is primarily designed in the CoDEA to rank all the individuals associated with every boundary subproblem according to the CoD aggregation function and determine the best ranks. The proposed algorithm is compared with several popular many-objective evolutionary algorithms on 85 benchmark test instances. The experimental results show that the CoDEA achieves high competitiveness, benefiting from the CoD method. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:505 / 525
页数:21
相关论文
共 50 条
  • [1] Effect of Objective Normalization and Penalty Parameter on Penalty Boundary Intersection Decomposition-Based Evolutionary Many-Objective Optimization Algorithms
    Chen, Lei
    Deb, Kalyanmoy
    Liu, Hai-Lin
    Zhang, Qingfu
    EVOLUTIONARY COMPUTATION, 2021, 29 (01) : 157 - 186
  • [2] An adaptive penalty-based boundary intersection method for many-objective optimization problem
    Qi, Yutao
    Liu, Dazhuang
    Li, Xiaodong
    Lei, Jiaojiao
    Xu, Xiaoying
    Miao, Qiguang
    INFORMATION SCIENCES, 2020, 509 (509) : 356 - 375
  • [3] An adaptive decomposition-based evolutionary algorithm for many-objective optimization
    Han, Dong
    Du, Wenli
    Du, Wei
    Jin, Yaochu
    Wu, Chunping
    INFORMATION SCIENCES, 2019, 491 : 204 - 222
  • [4] A decomposition-based evolutionary algorithm for scalable multi/many-objective optimization
    Jiaxin Chen
    Jinliang Ding
    Kay Chen Tan
    Qingda Chen
    Memetic Computing, 2021, 13 : 413 - 432
  • [5] A decomposition-based evolutionary algorithm for scalable multi/many-objective optimization
    Chen, Jiaxin
    Ding, Jinliang
    Tan, Kay Chen
    Chen, Qingda
    MEMETIC COMPUTING, 2021, 13 (03) : 413 - 432
  • [6] A Parameterless Penalty Rule-Based Fitness Estimation for Decomposition-Based Many-Objective Optimization Evolutionary Algorithm
    Liu, Junhua
    Wang, Yuping
    Wei, Shiwei
    Wu, Xiangjuan
    Tong, Wuning
    IEEE ACCESS, 2019, 7 : 81701 - 81716
  • [7] A Decomposition-Based Evolutionary Algorithm with Correlative Selection Mechanism for Many-Objective Optimization
    Liu, Ruochen
    Wang, Ruinan
    Bian, Renyu
    Liu, Jing
    Jiao, Licheng
    EVOLUTIONARY COMPUTATION, 2021, 29 (02) : 269 - 304
  • [8] Decomposition-based evolutionary algorithm with dual adjustments for many-objective optimization problems?
    Zhao, Chunliang
    Zhou, Yuren
    Hao, Yuanyuan
    SWARM AND EVOLUTIONARY COMPUTATION, 2022, 75
  • [9] A New Decomposition-based Evolutionary Framework for Many-objective Optimization
    Khan, Burhan
    Hanoun, Samer
    Johnstone, Michael
    Lim, Chee Peng
    Creighton, Douglas
    Nahavandi, Saeid
    2017 11TH ANNUAL IEEE INTERNATIONAL SYSTEMS CONFERENCE (SYSCON), 2017, : 477 - 483
  • [10] A Fuzzy Decomposition-Based Multi/Many-Objective Evolutionary Algorithm
    Liu, Songbai
    Lin, Qiuzhen
    Tan, Kay Chen
    Gong, Maoguo
    Coello, Carlos A. Coello
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (05) : 3495 - 3509