Big-Data-Generated Traffic Flow Prediction Using Deep Learning and Dempster-Shafer Theory

被引:0
|
作者
Soua, Ridha [1 ]
Koesdwiady, Arief [1 ]
Karray, Fakhri [1 ]
机构
[1] Univ Waterloo, Dept Elect & Comp Engn, CPAMI, Waterloo, ON N2L 3G1, Canada
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work addresses short-term traffic flow prediction by proposing a big-data-based framework. The proposed framework uses data fusion to deal with heterogeneous data generated from various sources. The data are categorized into two types: streams of data and event-based data. In this work, Deep Belief Networks (DBNs) are used to independently predict traffic flow using streams of data, i.e., historical traffic flow and weather data, and event-based data, i.e., tweets. Furthermore, Dempster's conditional rule for updating belief is used to fuse evidence coming from streams of data and event-based data modules to achieve enhanced prediction. The experimental results using real-world data show the merit of the proposed framework compared to the state-of- the-art ones.
引用
收藏
页码:3195 / 3202
页数:8
相关论文
共 50 条
  • [1] An evidential classifier based on Dempster-Shafer theory and deep learning
    Tong, Zheng
    Xu, Philippe
    Denoeux, Thierry
    [J]. NEUROCOMPUTING, 2021, 450 : 275 - 293
  • [2] Integrated Data Fusion Using Dempster-Shafer Theory
    Zhang, Yang
    Zeng, Qing-An
    Liu, Yun
    Shen, Bo
    [J]. 2015 FIRST INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE THEORY, SYSTEMS AND APPLICATIONS (CCITSA 2015), 2015, : 98 - 103
  • [3] Deep Learning and Dempster-Shafer Theory Based Insider Threat Detection
    Tian, Zhihong
    Shi, Wei
    Tan, Zhiyuan
    Qiu, Jing
    Sun, Yanbin
    Jiang, Feng
    Liu, Yan
    [J]. MOBILE NETWORKS & APPLICATIONS, 2020,
  • [4] A Dempster-Shafer Big Data Readiness Assessment Model
    Areerakulkan, Natapat
    Pongpech, Worapol Alex
    [J]. ICEIS: PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS - VOL 2, 2021, : 581 - 585
  • [5] Sentiment Prediction Based on Dempster-Shafer Theory of Evidence
    Basiri, Mohammad Ehsan
    Naghsh-Nilchi, Ahmad Reza
    Ghasem-Aghaee, Nasser
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [6] A generalization of entropy using Dempster-Shafer theory
    Herencia, JA
    Lamata, MT
    [J]. INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2000, 29 (05) : 719 - 735
  • [7] Geospatial Modeling Using Dempster-Shafer Theory
    Elmore, Paul A.
    Petry, Frederick E.
    Yager, Ronald R.
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (06) : 1551 - 1561
  • [8] Sensor fusion using Dempster-Shafer theory
    Wu, HD
    Siegel, M
    Stiefelhagen, R
    Yang, J
    [J]. IMTC 2002: PROCEEDINGS OF THE 19TH IEEE INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, VOLS 1 & 2, 2002, : 7 - 12
  • [9] Object Classification Using Dempster-Shafer Theory
    Harasymowicz-Boggio, B.
    Siemiatkowska, B.
    [J]. MECHATRONICS 2013: RECENT TECHNOLOGICAL AND SCIENTIFIC ADVANCES, 2014, : 559 - 565
  • [10] Sensor Data Fusion for Accurate Cloud Presence Prediction Using Dempster-Shafer Evidence Theory
    Li, Jiaming
    Luo, Suhuai
    Jin, Jesse S.
    [J]. SENSORS, 2010, 10 (10) : 9384 - 9396