Identifiability of Normal and Normal Mixture Models with Nonignorable Missing Data
被引:60
|
作者:
Miao, Wang
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Beijing Int Ctr Math Res, Beijing, Peoples R ChinaPeking Univ, Beijing Int Ctr Math Res, Beijing, Peoples R China
Miao, Wang
[1
]
Ding, Peng
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Berkeley, Dept Stat, 425 Evans Hall, Berkeley, CA 94720 USAPeking Univ, Beijing Int Ctr Math Res, Beijing, Peoples R China
Ding, Peng
[2
]
Geng, Zhi
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Sch Math Sci, Beijing, Peoples R China
Peking Univ, Ctr Stat Sci, Beijing, Peoples R ChinaPeking Univ, Beijing Int Ctr Math Res, Beijing, Peoples R China
Geng, Zhi
[3
,4
]
机构:
[1] Peking Univ, Beijing Int Ctr Math Res, Beijing, Peoples R China
[2] Univ Calif Berkeley, Dept Stat, 425 Evans Hall, Berkeley, CA 94720 USA
[3] Peking Univ, Sch Math Sci, Beijing, Peoples R China
[4] Peking Univ, Ctr Stat Sci, Beijing, Peoples R China
Heavy tail;
Logistic model;
Missing not at random;
Monotone missing mechanism;
Probit model;
Selection model;
SEMIPARAMETRIC REGRESSION;
NONRESPONSE;
INFERENCE;
NONCOMPLIANCE;
OUTCOMES;
D O I:
10.1080/01621459.2015.1105808
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
Missing data problems arise in many applied research studies. They may jeopardize statistical inference of the model of interest, if the missing mechanism is nonignorable, that is, the missing mechanism depends on the missing values themselves even conditional on the observed data. With a nonignorable missing mechanism, the model of interest is often not identifiable without imposing further assumptions. We find that even if the missing mechanism has a known parametric form, the model is not identifiable without specifying a parametric outcome distribution. Although it is fundamental for valid statistical inference, identifiability under nonignorable missing mechanisms is not established for many commonly used models. In this article, we first demonstrate identifiability of the normal distribution under monotone missing mechanisms. We then extend it to the normal mixture and t mixture models with nonmonotone missing mechanisms. We discover that models under the Logistic missing mechanism are less identifiable than those under the Probit missing mechanism. We give necessary and sufficient conditions for identifiability of models under the Logistic missing mechanism, which sometimes can be checked in real data analysis. We illustrate our methods using a series of simulations, and apply them to a real-life dataset. Supplementary materials for this article are available online.
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
City Univ Hong Kong, Dept Management Sci, Hong Kong, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
Zheng, Siming
Zhang, Juan
论文数: 0引用数: 0
h-index: 0
机构:
Capital Univ Econ & Business, Sch Stat, Beijing, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
Zhang, Juan
Zhou, Yong
论文数: 0引用数: 0
h-index: 0
机构:
Key Lab Adv Theory & Applicat Stat & Data Sci, MOE, Shanghai, Peoples R China
East China Normal Univ, Acad Stat & Interdisciplinary Sci, Shanghai, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
Zhou, Yong
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE,
2023,
51
(04):
: 1190
-
1209
机构:
Nankai Univ, Sch Stat & Data Sci, Tianjin, Peoples R China
Nankai Univ, LPMC, Tianjin, Peoples R ChinaNankai Univ, Sch Stat & Data Sci, Tianjin, Peoples R China
机构:
Nankai Univ, Sch Stat & Data Sci, Tianjin 300071, Peoples R China
Nankai Univ, LPMC, Tianjin 300071, Peoples R ChinaNankai Univ, Sch Stat & Data Sci, Tianjin 300071, Peoples R China
Guo, Feng
Ma, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Sch Stat & Data Sci, Tianjin 300071, Peoples R China
Nankai Univ, LPMC, Tianjin 300071, Peoples R ChinaNankai Univ, Sch Stat & Data Sci, Tianjin 300071, Peoples R China
Ma, Wei
Wang, Lei
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Sch Stat & Data Sci, Tianjin 300071, Peoples R China
Nankai Univ, LPMC, Tianjin 300071, Peoples R ChinaNankai Univ, Sch Stat & Data Sci, Tianjin 300071, Peoples R China
机构:
Univ Calif Santa Barbara, Dept Stat & Appl Probabil, Santa Barbara, CA 93106 USAUniv Calif Santa Barbara, Dept Stat & Appl Probabil, Santa Barbara, CA 93106 USA
Franks, Alexander M.
Airoldi, Edoardo M.
论文数: 0引用数: 0
h-index: 0
机构:
Temple Univ, Fox Sch Business, Dept Stat Sci, Philadelphia, PA 19122 USAUniv Calif Santa Barbara, Dept Stat & Appl Probabil, Santa Barbara, CA 93106 USA
机构:
Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
VA Puget Sound Hlth Care Syst, Biostat Unit, HSR&D Ctr Excellence, Seattle, WA 98101 USA
Univ Washington, Dept Biostat, Seattle, WA 98195 USAPeking Univ, Sch Math Sci, Beijing 100871, Peoples R China
Chen, Hua
Geng, Zhi
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Sch Math Sci, Beijing 100871, Peoples R ChinaPeking Univ, Sch Math Sci, Beijing 100871, Peoples R China
Geng, Zhi
Zhou, Xiao-Hua
论文数: 0引用数: 0
h-index: 0
机构:
VA Puget Sound Hlth Care Syst, Biostat Unit, HSR&D Ctr Excellence, Seattle, WA 98101 USA
Univ Washington, Dept Biostat, Seattle, WA 98195 USAPeking Univ, Sch Math Sci, Beijing 100871, Peoples R China