Speeding up elliptic scalar multiplication using multidoubling

被引:0
|
作者
Sakai, Y [1 ]
Sakurai, K
机构
[1] Mitsubishi Electr Corp, Informat Technol R&D Ctr, Kamakura, Kanagawa 2478501, Japan
[2] Kyushu Univ, Fac Engn, Fukuoka 8128581, Japan
关键词
elliptic curve cryptosystems; scalar multiplication; Montgomery form; multidoubling; fast implementation;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We discuss multidoubling methods for efficient elliptic scalar multiplication. The methods allows computation of 2(k)P directly from P without computing the intermediate points, where P denotes a randomly selected point on an elliptic curve. We introduce algorithms for elliptic curves with Montgomery form and Weierstrass form defined over finite fields with characteristic greater than 3 in terms of affine coordinates. These algorithms are faster than k repeated doublings. Moreover; we apply the algorithms to scalar multiplication on elliptic curves and analyze computational complexity. As a result of our implementation with respect to the Montgomery and Weierstrass forms in terms of affine coordinates, we achieved running time reduced by 28% and 31%, respectively, in the scalar multiplication of an elliptic curve of size 160-bit over finite fields with characteristic greater than 3.
引用
收藏
页码:1075 / 1083
页数:9
相关论文
共 50 条
  • [1] Speeding up elliptic scalar multiplication with precomputation
    Lim, CH
    Hwang, HS
    INFORMATION SECURITY AND CRYPTOLOGY - ICISC'99, 2000, 1787 : 102 - 119
  • [2] Speeding up the Elliptic Curve Scalar Multiplication Using Non Adjacent Form
    Al Saffar, Najlae Falah Hameed
    Said, Mohamad Rushdan Md
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2015, 18 (06): : 801 - 821
  • [3] SPEEDING UP REGULAR ELLIPTIC CURVE SCALAR MULTIPLICATION WITHOUT PRECOMPUTATION
    Kim, Kwang Ho
    Choe, Junyop
    Kim, Song Yun
    Kim, Namsu
    Hong, Sekung
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2020, 14 (04) : 703 - 726
  • [4] Speeding Up the Computation of Elliptic Curve Scalar Multiplication based on CRT and DRM
    Anagreh, Mohammad
    Vainikko, Eero
    Laud, Peeter
    ICISSP: PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS SECURITY AND PRIVACY, 2020, : 176 - 184
  • [5] Speeding up the Elliptic Curve Scalar Multiplication Using the Window- w Non Adjacent Form
    Al Saffar, Najlae Falah Hameed
    Said, Mohamad Rushdan Md
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2015, 9 (01): : 91 - 110
  • [6] Speeding up Scalar Multiplication on Koblitz Curves Using μ4 Coordinates
    Li, Weixuan
    Yu, Wei
    Li, Bao
    Fan, Xuejun
    INFORMATION SECURITY AND PRIVACY, ACISP 2019, 2019, 11547 : 620 - 629
  • [7] Speeding scalar multiplication over binary elliptic curves using the new carry-less multiplication instruction
    Taverne, Jonathan
    Faz-Hernandez, Armando
    Aranha, Diego F.
    Rodriguez-Henriquez, Francisco
    Hankerson, Darrel
    Lopez, Julio
    JOURNAL OF CRYPTOGRAPHIC ENGINEERING, 2011, 1 (03) : 187 - 199
  • [8] Speeding up scalar multiplication using a new signed binary representation for integers
    Wang, Bang-Ju
    Zhang, Huan-Guo
    Wang, Zhang-Yi
    Wang, Yu-Hua
    MULTIMEDIA CONTENT ANALYSIS AND MINING, PROCEEDINGS, 2007, 4577 : 277 - +
  • [9] Speeding up the scalar multiplication in the Jacobians of hyperelliptic curves using Frobenius map
    Choie, Y
    Lee, JW
    PROGRESS IN CRYPTOLOGY - INDOCRYPT 2002, PROCEEDINGS, 2002, 2551 : 285 - 295
  • [10] Speeding scalar multiplication of elliptic curve over GF(2mn)
    Yong, Ding
    Hong, Yin-Fang
    Wang, Wei-Tao
    Zhou, Yuan-Yuan
    Zhao, Xiao-Yang
    International Journal of Network Security, 2010, 11 (02) : 70 - 77