On local super antimagic face coloring of plane graphs

被引:1
|
作者
Anggraeni [1 ,3 ]
Dafik [1 ,3 ]
Maryati, T. K. [2 ]
Agustin, I. H. [1 ,4 ]
Alfarisi, R. [1 ,5 ]
Kurniawati, E. Y. [1 ,4 ]
机构
[1] Univ Jember, CGANT, Jember, Indonesia
[2] State Islamic Univ UIN Syarif Hidayatullah, Dept Math Educ, Jakarta, Indonesia
[3] Univ Jember, Dept Math Educ, Jember, Indonesia
[4] Univ Jember, Dept Math, Jember, Indonesia
[5] Univ Jember, Dept Elementary Sch Teacher Educ, Jember, Indonesia
关键词
D O I
10.1088/1755-1315/243/1/012016
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
Let G(V, E) be a connected graph of order n and size m. A bijection g : V (G) boolean OR E(G) -> {1, 2,..., n m} is called a local super antimagic face coloring such that for any two adjacent face Al and A2, w(A(1)) not equal (A(2)) where w(A) = Sigma(v is an element of v(A)) f (v) + Sigma(e is an element of(A)) f (e). The local super antimagic face coloring chromatic number gamma laf(G) defined the minimum number of colors taken over all colorings of G induced by local super antimagic face coloring of G. In this paper, we study local super antimagic face coloring of some plane graphs. The name of graphs are gear graph (J(n)), prism graph (P-n), double fan graph (Df(n)), and antiprism graph (Ap(n)).
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Local Face Antimagic Evaluations and Coloring of Plane Graphs
    Bong, Novi
    Baca, Martin
    Semanicova-Fenovcikova, Andrea
    Sugeng, Kiki A.
    Wang, Tao-Ming
    FUNDAMENTA INFORMATICAE, 2020, 174 (02) : 103 - 119
  • [2] Local super antimagic total face coloring of planar graphs
    Nisviasari, R.
    Dafik
    Maryati, T. K.
    Agustin, I. H.
    Kurniawati, E. Y.
    FIRST INTERNATIONAL CONFERENCE ON ENVIRONMENTAL GEOGRAPHY AND GEOGRAPHY EDUCATION (ICEGE), 2019, 243
  • [3] On the local super antimagic total face chromatic number of plane graphs
    Anggraini, D. D.
    Dafik
    Maryati, T. K.
    Augustin, I. H.
    Kurniawati, E. Y.
    Prihandini, R. M.
    FIRST INTERNATIONAL CONFERENCE ON ENVIRONMENTAL GEOGRAPHY AND GEOGRAPHY EDUCATION (ICEGE), 2019, 243
  • [4] Local Super Antimagic Total Labeling for Vertex Coloring of Graphs
    Slamin, Slamin
    Adiwijaya, Nelly Oktavia
    Hasan, Muhammad Ali
    Dafik, Dafik
    Wijaya, Kristiana
    SYMMETRY-BASEL, 2020, 12 (11): : 1 - 17
  • [5] On local super h-decomposition antimagic total coloring of graphs
    Dini, R. P.
    Dafik
    Slamin
    Agustin, I. H.
    Adawiyah, R.
    Alfarisi, R.
    FIRST INTERNATIONAL CONFERENCE ON ENVIRONMENTAL GEOGRAPHY AND GEOGRAPHY EDUCATION (ICEGE), 2019, 243
  • [6] On Super Local Antimagic Total Edge Coloring of Some Wheel Related Graphs
    Agustin, Ika Hesti
    Alfarisi, Ridho
    Dafik
    Kristiana, A. I.
    Prihandini, R. M.
    Kurniawati, E. Y.
    INTERNATIONAL CONFERENCE ON SCIENCE AND APPLIED SCIENCE (ICSAS) 2018, 2018, 2014
  • [7] Local antimagic vertex coloring of a Myceilski of graphs
    Sethukkarasi, A.
    Vidyanandini, S.
    Nayak, Soumya Ranjan
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2024, 27 (04): : 1389 - 1401
  • [8] Face antimagic labelings of plane graphs Pab
    Lin, Yuqing
    Sugeng, Kiki A.
    ARS COMBINATORIA, 2006, 80 : 259 - 273
  • [9] Local antimagic vertex coloring for generalized friendship graphs
    Nalliah, M.
    Shankar, R.
    Wang, Tao-Ming
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2023, 26 (04): : 1063 - 1078
  • [10] On (a, d)-edge local antimagic coloring number of graphs
    Sundaramoorthy, Rajkumar
    Moviri Chettiar, Nalliah
    TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (05) : 1994 - 2002