The Krein spectral shift function in semifinite von Neumann algebras

被引:17
|
作者
Azamov, N. A. [1 ]
Dodds, P. G. [1 ]
Sukochev, F. A. [1 ]
机构
[1] Flinders Univ S Australia, Sch Informat & Engn, Bedford Pk, SA 5042, Australia
基金
澳大利亚研究理事会;
关键词
spectral shift function; semifinite von Neumann algebra;
D O I
10.1007/s00020-006-1441-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show the existence of a spectral shift function in the sense of Krein for bounded trace class perturbations of a self-adjoint operator affiliated with a semifinite von Neumann algebra.
引用
收藏
页码:347 / 362
页数:16
相关论文
共 50 条
  • [1] The Krein Spectral Shift Function in Semifinite von Neumann Algebras
    N. A. Azamov
    P. G. Dodds
    F. A. Sukochev
    Integral Equations and Operator Theory, 2006, 55 : 347 - 362
  • [2] A Banach Principle Semifinite von Neumann Algebras
    Chilin, Vladimir
    Litvinov, Semyon
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2006, 2
  • [3] Singular traces on semifinite von Neumann algebras
    Guido, D
    Isola, T
    JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 134 (02) : 451 - 485
  • [4] On a property of Lp spaces on semifinite von Neumann algebras
    Bikchentaev, AM
    MATHEMATICAL NOTES, 1998, 64 (1-2) : 159 - 163
  • [5] On a property ofLp spaces on semifinite von Neumann algebras
    A. M. Bikchentaev
    Mathematical Notes, 1998, 64 : 159 - 163
  • [6] Local convergence in measure on semifinite von Neumann algebras
    A. M. Bikchentaev
    Proceedings of the Steklov Institute of Mathematics, 2006, 255 (1) : 35 - 48
  • [7] On individual ergodic theorems for semifinite von Neumann algebras
    Chilin, Vladimir
    Litvinov, Semyon
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 495 (01)
  • [8] Derivations with values in ideals of semifinite von Neumann algebras
    Ber, A.
    Huang, J.
    Levitina, G.
    Sukochev, F.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (12) : 4984 - 4997
  • [9] APPROXIMATE EQUIVALENCE OF REPRESENTATIONS OF AF ALGEBRAS INTO SEMIFINITE VON NEUMANN ALGEBRAS
    Wen, Shilin
    Fang, Junsheng
    Shi, Rui
    OPERATORS AND MATRICES, 2019, 13 (03): : 777 - 795
  • [10] A NOTE ON REPRESENTATIONS OF COMMUTATIVE C*-ALGEBRAS IN SEMIFINITE VON NEUMANN ALGEBRAS
    Hadwin, Don
    Shi, Rui
    OPERATORS AND MATRICES, 2018, 12 (04): : 1129 - 1144