Eigenvalues of graphs and a simple proof of a theorem of Greenberg

被引:9
|
作者
Cioaba, Sebastian M. [1 ]
机构
[1] Queens Univ, Dept Math, Kingston, ON K7L 3N6, Canada
关键词
spectral radius; universal cover; eigenvalues;
D O I
10.1016/j.laa.2005.12.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In his Ph.D. thesis, Greenberg proved that if p(5) is the spectral radius of the universal cover 5 of a finite graph X, then for each epsilon > 0, a positive proportion (depending only on (X) over tilde and epsilon) of the eigenvalues of X have absolute value at least p ((X) over tilde) - epsilon. In this paper, we show that the same result holds true if we remove absolute from the previous result. We also prove an analogue result for the smallest eigenvalues of X. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:776 / 782
页数:7
相关论文
共 50 条