An upper bound for the crossing number of locally twisted cubes

被引:0
|
作者
Wang, Haoli [1 ]
Xu, Xirong [2 ]
Yang, Yuansheng [2 ]
Liu, Bao [2 ]
Zheng, Wenping [3 ]
Wang, Guoqing [4 ]
机构
[1] Tianjin Normal Univ, Coll Comp & Informat Engn, Tianjin 300387, Peoples R China
[2] Dalian Univ Technol, Dept Comp Sci, Dalian 116024, Peoples R China
[3] Shanxi Univ, Minist Educ, Key Lab Computat Intelligence & Chinese Informat, Taiyuan 030006, Peoples R China
[4] Tianjin Polytech Univ, Dept Math, Tianjin 300387, Peoples R China
关键词
Drawing; Crossing number; Locally twisted cube; Hyper-cube; Interconnection network; N-CUBE; DISTANCES; PLANE; VLSI;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The crossing number of a graph G is the minimum number of pairwise intersections of edges in a drawing of G. The n -dimensional locally twisted cubes LTQ(n), proposed by X.F. Yang, D.J. Evans and G.M. Megson, is an important interconnection network with good topological properties and applications. In this paper, we mainly obtain an upper bound on the crossing number of LTQ(n) no more than 265/6 4(n-4)-(n(2) + 15+(-1)(n-1)/6)2(n-3).
引用
收藏
页码:87 / 106
页数:20
相关论文
共 50 条
  • [1] The crossing number of locally twisted cubes LTQn
    Zhao Lingqi
    Xu Xirong
    Bai Siqin
    Zhang Huifeng
    Yang Yuansheng
    DISCRETE APPLIED MATHEMATICS, 2018, 247 : 407 - 418
  • [2] An upper bound for the crossing number of augmented cubes
    Wang, Guoqing
    Wang, Haoli
    Yang, Yuansheng
    Yang, Xuezhi
    Zheng, Wenping
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2013, 90 (02) : 183 - 227
  • [3] The locally twisted cubes
    Yang, XF
    Evans, DJ
    Megson, G
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2005, 82 (04) : 401 - 413
  • [4] Panconnectivity of locally twisted cubes
    Ma, Meijie
    Xu, Jun-Ming
    APPLIED MATHEMATICS LETTERS, 2006, 19 (07) : 673 - 677
  • [5] An improved upper bound on the crossing number of the hypercube
    Faria, Luerbio
    Herrera de Figueiredo, Celina Miraglia
    Sykora, Ondrej
    Vrt'o, Imrich
    JOURNAL OF GRAPH THEORY, 2008, 59 (02) : 145 - 161
  • [6] An improved upper bound on the crossing number of the hypercube
    Faria, L
    de Figueiredo, CMH
    Sykora, O
    Vrt'o, I
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2003, 2880 : 230 - 236
  • [7] Linear layout of locally twisted cubes
    Arockiaraj, Micheal
    Abraham, Jessie
    Quadras, Jasintha
    Shalini, Arul Jeya
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2017, 94 (01) : 56 - 65
  • [8] Fault tolerance of locally twisted cubes
    Guo, Litao
    Su, Guifu
    Lin, Wenshui
    Chen, Jinsong
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 334 : 401 - 406
  • [9] The Conditional Diagnosability of Locally Twisted Cubes
    Zhou Shuming
    ICCSSE 2009: PROCEEDINGS OF 2009 4TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE & EDUCATION, 2009, : 221 - 226
  • [10] Optimal broadcasting for locally twisted cubes
    Yang, Xiaofan
    Wang, Lei
    Yang, Luxing
    INFORMATION PROCESSING LETTERS, 2012, 112 (04) : 129 - 134