Self-organized magnetization in arrays of bistable nanowires

被引:7
|
作者
Velázquez, J [1 ]
Vázquez, M
机构
[1] Univ Complutense Madrid, CAI Difraccion Rayos X, Fac Ciencias Quim, Madrid 28040, Spain
[2] UCM, RENFE, Inst Magnetismo Aplicado, Madrid 28230, Spain
[3] CSIC, Inst Ciencia Mat, Madrid 28049, Spain
关键词
fractals; magnetic dipolar interactions magnetization; reversal; nanotechnology; self-organization;
D O I
10.1109/TMAG.2002.803619
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The study of arrays of magnetic nanowires is of large interest for potential technological applications in perpendicular recording media. Magnetostatic interactions between individual nanowires plays an important role in the magnetization process of the array. The objective of this work has been to theoretically analyze the influence of the symmetry of the geometrical array. It is shown that magnetization reversal in an array with cubic symmetry proceeds in a nearly continuous way; meanwhile, a random disposition favors the reversal in a single step. Furthermore, the magnetic interaction of nanowires in the array gives rise to self-organized collective magnetization that can be ascribed to complex systems described by fractals.
引用
收藏
页码:2477 / 2479
页数:3
相关论文
共 50 条
  • [31] Self-organized titanium oxide nanodot arrays by electrochemical anodization
    Chen, PL
    Kuo, CT
    Tsai, TG
    Wu, BW
    Hsu, CC
    Pan, FM
    APPLIED PHYSICS LETTERS, 2003, 82 (17) : 2796 - 2798
  • [32] SERS Amplification from Self-Organized Arrays of Plasmonic Nanocrescents
    Giordano, Maria Caterina
    Foti, Antonino
    Messina, Elena
    Gucciardi, Pietro Giuseppe
    Comoretto, Davide
    de Mongeot, Francesco Buatier
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (10) : 6629 - 6638
  • [33] Self-organized tantalum oxide nanopyramidal arrays for antireflective structure
    Wu, Chia-Tien
    Ko, Fu-Hsiang
    Lin, Chun-Hung
    APPLIED PHYSICS LETTERS, 2007, 90 (17)
  • [34] Formation and optical properties of self-organized pentameric porphyrin arrays
    Chernook, AV
    Rempel, U
    vonBorczyskowski, C
    Shulga, AM
    Zenkevich, EI
    CHEMICAL PHYSICS LETTERS, 1996, 254 (3-4) : 229 - 241
  • [35] Self-organized metal nanowire arrays with tunable optical anisotropy
    Toma, A.
    Chiappe, D.
    Massabo, D.
    Boragno, C.
    de Mongeot, F. Buatier
    APPLIED PHYSICS LETTERS, 2008, 93 (16)
  • [36] Self-Organized NiO Microcavity Arrays Fabricated by Thermal Treatments
    Taeno, Maria
    Bartolome, Javier
    Gregoratti, Luca
    Modrzynski, Pawel
    Maestre, David
    Cremades, Ana
    CRYSTAL GROWTH & DESIGN, 2020, 20 (06) : 4082 - 4091
  • [37] Self-organized formation of hexagonal pore arrays in anodic alumina
    Jessensky, O
    Muller, F
    Gosele, U
    APPLIED PHYSICS LETTERS, 1998, 72 (10) : 1173 - 1175
  • [38] Self-organized formation of hexagonal hollow arrays in anodic GaAs
    Morishita, Y
    Kawai, S
    Sunagawa, J
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 1999, 38 (10B): : L1156 - L1158
  • [39] Broadband plasmonic response of self-organized aluminium nanowire arrays
    Bisio, Francesco
    Gonella, Grazia
    Maidecchi, Giulia
    Buzio, Renato
    Gerbi, Andrea
    Moroni, Riccardo
    Giglia, Angelo
    Canepa, Maurizio
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2015, 48 (18)
  • [40] Strength of self-organized TiO2 nanotube arrays
    Hirakata, Hiroyuki
    Ito, Kenji
    Yonezu, Akio
    Tsuchiya, Hiroaki
    Fujimoto, Shinji
    Minoshima, Kohji
    ACTA MATERIALIA, 2010, 58 (15) : 4956 - 4967