Hyperspectral Image Classification With Mixed Link Networks

被引:19
|
作者
Meng, Zhe [1 ]
Jiao, Licheng [2 ]
Liang, Miaomiao [3 ]
Zhao, Feng [1 ]
机构
[1] Xian Univ Posts & Telecommun, Sch Telecommun & Informat Engn, Xian 710121, Peoples R China
[2] Xidian Univ, Sch Artificial Intelligence, Xian 710071, Peoples R China
[3] Jiangxi Univ Sci & Technol, Sch Informat Engn, Ganzhou 341000, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Hyperspectral imaging; Topology; Network topology; Additives; Redundancy; Computer architecture; Convolutional neural network (CNN); deep learning; hyperspectral image (HSI) classification; mixed link network (MLNet); MARKOV-RANDOM-FIELDS; RESIDUAL NETWORK; CNN;
D O I
10.1109/JSTARS.2021.3053567
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Convolutional neural networks (CNNs) have improved the accuracy of hyperspectral image (HSI) classification significantly. However, CNN models usually generate a large number of feature maps, which lead to high redundancy and cannot guarantee to effectively extract discriminative features for well characterizing the complex structures of HSIs. In this article, two novel mixed link networks (MLNets) are proposed to enhance the representational ability of CNNs for HSI classification. Specifically, the proposed mixed link architectures integrate the feature reusage property of the residual network and the capability of effective new feature exploration of the densely convolutional network, extracting more discriminative features from HSIs. Compared with the dual path architecture, the proposed mixed link architectures can further improve the information flow throughout the network. Experimental results on three hyperspectral benchmark datasets demonstrate that our MLNets achieve competitive results compared with other state-of-the-art HSI classification approaches.
引用
收藏
页码:2494 / 2507
页数:14
相关论文
共 50 条
  • [1] Mixed Structure with 3D Multi-Shortcut-Link Networks for Hyperspectral Image Classification
    Zheng, Hui
    Cao, Yizhi
    Sun, Min
    Guo, Guihai
    Meng, Junzhen
    Guo, Xinwei
    Jiang, Yanchi
    [J]. REMOTE SENSING, 2022, 14 (05)
  • [2] Hyperspectral Image Transformer Classification Networks
    Yang, Xiaofei
    Cao, Weijia
    Lu, Yao
    Zhou, Yicong
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [3] Capsule Networks for Hyperspectral Image Classification
    Paoletti, Mercedes E.
    Haut, Juan Mario
    Fernandez-Beltran, Ruben
    Plaza, Javier
    Plaza, Antonio
    Li, Jun
    Pla, Filiberto
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (04): : 2145 - 2160
  • [4] Deep mixed precision for hyperspectral image classification
    M. E. Paoletti
    X. Tao
    J. M. Haut
    S. Moreno-Álvarez
    A. Plaza
    [J]. The Journal of Supercomputing, 2021, 77 : 9190 - 9201
  • [5] Deep mixed precision for hyperspectral image classification
    Paoletti, M. E.
    Tao, X.
    Haut, J. M.
    Moreno-Alvarez, S.
    Plaza, A.
    [J]. JOURNAL OF SUPERCOMPUTING, 2021, 77 (08): : 9190 - 9201
  • [6] Generative Adversarial Networks for Hyperspectral Image Classification
    Zhu, Lin
    Chen, Yushi
    Ghamisi, Pedram
    Benediktsson, Jon Atli
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (09): : 5046 - 5063
  • [7] DEEP RESIDUAL NETWORKS FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Zhong, Zilong
    Li, Jonathan
    Ma, Lingfei
    Jiang, Han
    Zhao, He
    [J]. 2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 1824 - 1827
  • [8] Convolutional neural networks for hyperspectral image classification
    Yu, Shiqi
    Jia, Sen
    Xu, Chunyan
    [J]. NEUROCOMPUTING, 2017, 219 : 88 - 98
  • [9] Hierarchical attention networks for hyperspectral image classification
    Li, Zhengtao
    Xu, Hai
    Zhang, Yaozong
    Zhang, Tianxu
    [J]. MIPPR 2019: REMOTE SENSING IMAGE PROCESSING, GEOGRAPHIC INFORMATION SYSTEMS, AND OTHER APPLICATIONS, 2020, 11432
  • [10] HYPERSPECTRAL IMAGE CLASSIFICATION BY PARAMETERS PREDICTION NETWORKS
    Ji, Sheng
    Ma, Xiaorui
    Wang, Weibin
    Yu, Li
    Geng, Jie
    Wang, Hongyu
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 3309 - 3312