A Posteriori Error Control for a Weakly Over-Penalized Symmetric Interior Penalty Method

被引:15
|
作者
Brenner, Susanne C. [1 ,2 ]
Gudi, Thirupathi [2 ]
Sung, Li-yeng [1 ]
机构
[1] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[2] Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA
基金
美国国家科学基金会;
关键词
A posteriori error estimator; Symmetric interior penalty method; Weak over-penalization; Finite element; DISCONTINUOUS GALERKIN METHODS; 2ND-ORDER ELLIPTIC PROBLEMS; FINITE-ELEMENT METHODS; APPROXIMATION;
D O I
10.1007/s10915-009-9278-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A reliable and efficient residual based a posteriori error estimator is constructed for a weakly over-penalized symmetric interior penalty method for second order elliptic problems. Numerical results that demonstrate the performance of the error estimator are presented.
引用
收藏
页码:37 / 50
页数:14
相关论文
共 50 条
  • [1] A Posteriori Error Control for a Weakly Over-Penalized Symmetric Interior Penalty Method
    Susanne C. Brenner
    Thirupathi Gudi
    Li-yeng Sung
    [J]. Journal of Scientific Computing, 2009, 40 : 37 - 50
  • [2] A WEAKLY OVER-PENALIZED SYMMETRIC INTERIOR PENALTY METHOD
    Brenner, Susanne C.
    Owens, Luke
    Sung, Li-Yeng
    [J]. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2008, 30 : 107 - 127
  • [3] A Posteriori Error Estimates of a Weakly Over-Penalized Symmetric Interior Penalty Method for Elliptic Eigenvalue Problems
    Zeng, Yuping
    Chen, Jinru
    Wang, Feng
    [J]. EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2015, 5 (04) : 327 - 341
  • [4] A WEAKLY OVER-PENALIZED SYMMETRIC INTERIOR PENALTY METHOD FOR THE BIHARMONIC PROBLEM
    Brenner, Susanne C.
    Gudi, Thirupathi
    Sung, Li-Yeng
    [J]. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2010, 37 : 214 - 238
  • [5] Error estimates of the weakly over-penalized symmetric interior penalty method for two variational inequalities
    Zeng, Yuping
    Chen, Jinru
    Wang, Feng
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 69 (08) : 760 - 770
  • [6] Higher order weakly over-penalized symmetric interior penalty methods
    Brenner, Susanne C.
    Owens, Luke
    Sung, Li-Yeng
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (11) : 2883 - 2894
  • [7] A balancing domain decomposition by constraints preconditioner for a weakly over-penalized symmetric interior penalty method
    Brenner, Susanne C.
    Park, Eun-Hee
    Sung, Li-Yeng
    [J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2013, 20 (03) : 472 - 491
  • [8] A PRIORI AND A POSTERIORI ERROR ESTIMATES OF A WEAKLY OVER-PENALIZED INTERIOR PENALTY METHOD FOR NON-SELF-ADJOINT AND INDEFINITE PROBLEMS
    Zeng, Yuping
    Chen, Jinru
    Wang, Feng
    Meng, Yanxia
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2014, 32 (03) : 332 - 347
  • [9] Two-Level Additive Schwarz Preconditioners for a Weakly Over-Penalized Symmetric Interior Penalty Method
    Barker, A. T.
    Brenner, S. C.
    Park, E. -H.
    Sung, L. -Y.
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2011, 47 (01) : 27 - 49
  • [10] Two-Level Additive Schwarz Preconditioners for a Weakly Over-Penalized Symmetric Interior Penalty Method
    A. T. Barker
    S. C. Brenner
    E.-H. Park
    L.-Y. Sung
    [J]. Journal of Scientific Computing, 2011, 47 : 27 - 49