A Spatial Big Data Framework for Maritime Traffic Data

被引:0
|
作者
Lei, Bao [1 ]
Le, Yang [2 ]
机构
[1] Wuhan East Lake Coll, Comp Sci Dept, Wuhan, Hubei, Peoples R China
[2] Navy Univ Engn, Coll Elect Engn, Wuhan, Hubei, Peoples R China
关键词
AIS; maritime location data; hadoop; spatial index;
D O I
10.1109/1CCIA.2018.00054
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In order to analysis maritime traffic data from Automatic Identification System,this paper present a big data framework based on SpatialHadoop. This framework extend the data type, storage, computing and operation layer of traditional Hadoop to incorporate maritime location data. In storage layer, it introduce a two -layer spatial index structure which can establish R -tree or R+ -tree spatial index on Hadoop Distributed File System(HDFS) storage. And it add two new components in Mapreduce programming,which make it fitful for parallel computing on maritime spatial data. Based on these function provided, we can build up various spatial analysis operation on big maritime location data, and support various spatial statistical or spatial data mining applications
引用
收藏
页码:244 / 248
页数:5
相关论文
共 50 条
  • [1] MaritimeDS: a data service framework for unsupervised maritime traffic monitoring based on trajectory big data
    Yang X.
    Wang G.
    Gao J.
    Journal of Reliable Intelligent Environments, 2022, 8 (01) : 3 - 19
  • [2] A Big Data Framework for Analysis of Traffic Data in Italian Highways
    Diamantini, Claudia
    Potena, Domenico
    Storti, Emanuele
    FOUNDATIONS OF INTELLIGENT SYSTEMS (ISMIS 2018), 2018, 11177 : 161 - 168
  • [3] Spatial pattern and coupling characteristics analysis of maritime traffic and economic development based on shipping big data
    Wang, Ping
    Wen, Yubo
    Ai, Bo
    Liu, Xue
    FRONTIERS IN MARINE SCIENCE, 2024, 11
  • [4] Maritime Traffic Evaluation Using Spatial-Temporal Density Analysis Based on Big AIS Data
    Kim, Yoon-Ji
    Lee, Jeong-Seok
    Pititto, Alessandro
    Falco, Luigi
    Lee, Moon-Suk
    Yoon, Kyoung-Kuk
    Cho, Ik-Soon
    APPLIED SCIENCES-BASEL, 2022, 12 (21):
  • [5] Spatial-Crowd: A Big Data Framework for Efficient Data Visualization
    Atta, Shahbaz
    Sadiq, Bilal
    Ahmad, Akhlaq
    Saeed, Sheikh Nasir
    Felemban, Emad
    2016 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2016, : 2130 - 2138
  • [6] Big Data in the Maritime Industry
    Mirovic, Maris
    Milicevic, Mario
    Obradovic, Ines
    NASE MORE, 2018, 65 (01): : 56 - 62
  • [7] A big data analytics method for the evaluation of maritime traffic safety using automatic identification system data
    Ma, Quandang
    Tang, Huan
    Liu, Cong
    Zhang, Mingyang
    Zhang, Dingze
    Liu, Zhao
    Zhang, Liye
    OCEAN & COASTAL MANAGEMENT, 2024, 251
  • [8] A Big Data-Enabled Hierarchical Framework for Traffic Classification
    Bovenzi, Giampaolo
    Aceto, Giuseppe
    Ciuonzo, Domenico
    Persico, Valerio
    Pescape, Antonio
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2020, 7 (04): : 2608 - 2619
  • [9] Road Traffic Big Data Collision Analysis Processing Framework
    Chung, Duckwon
    Rui, Xuhua
    Min, Dugki
    Yeo, Hwasoo
    2013 7TH INTERNATIONAL CONFERENCE ON APPLICATION OF INFORMATION AND COMMUNICATION TECHNOLOGIES (AICT), 2013, : 87 - 90
  • [10] Traffic Data Processing at Age of Big Data
    Zhang, Hong
    Wang, Xiaoming
    Zhu, Changsheng
    INTERNATIONAL CONFERENCE ON ELECTRICAL AND CONTROL ENGINEERING (ICECE 2015), 2015, : 976 - 980