Improved testing inference in mixed linear models

被引:13
|
作者
Melo, Tatiane F. N. [1 ]
Ferrari, Silvia L. P. [1 ]
Cribari-Neto, Francisco [2 ]
机构
[1] Univ Sao Paulo, Dept Estat, BR-05508090 Sao Paulo, Brazil
[2] Univ Fed Pernambuco, Dept Estat, BR-50740540 Recife, PE, Brazil
基金
巴西圣保罗研究基金会;
关键词
PROFILE LIKELIHOOD INFERENCE; NUISANCE PARAMETERS; BARTLETT CORRECTION;
D O I
10.1016/j.csda.2008.12.007
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Mixed linear models are commonly used in repeated measures studies. They account for the dependence amongst observations obtained from the same experimental unit. Often, the number of observations is small, and it is thus important to use inference strategies that incorporate small sample corrections. In this paper, we develop modified versions of the likelihood ratio test for fixed effects inference in mixed linear models. In particular, we derive a Bartlett correction to such a test, and also to a test obtained from a modified profile likelihood function. Our results generalize those in [Zucker, D.M., Lieberman, O., Manor, O., 2000. Improved small sample inference in the mixed linear model: Bartlett correction and adjusted likelihood. Journal of the Royal Statistical Society B, 62,827-838] by allowing the parameter of interest to be vector-valued. Additionally, our Bartlett corrections allow for random effects nonlinear covariance matrix structure. We report simulation results which show that the proposed tests display superior finite sample behavior relative to the standard likelihood ratio test. An application is also presented and discussed. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:2573 / 2582
页数:10
相关论文
共 50 条
  • [1] Inference for seemingly unrelated linear mixed models
    Wang, Lichun
    Yang, Yang
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2024, 228 : 80 - 94
  • [2] Bayesian inference for generalized linear mixed models
    Fong, Youyi
    Rue, Havard
    Wakefield, Jon
    [J]. BIOSTATISTICS, 2010, 11 (03) : 397 - 412
  • [3] APPROXIMATE INFERENCE IN GENERALIZED LINEAR MIXED MODELS
    BRESLOW, NE
    CLAYTON, DG
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (421) : 9 - 25
  • [4] Selective inference for additive and linear mixed models
    Rugamer, David
    Baumann, Philipp F. M.
    Greven, Sonja
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 167
  • [5] Local inference for functional linear mixed models
    Pini, Alessia
    Sorensen, Helle
    Tolver, Anders
    Vantini, Simone
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2023, 181
  • [6] Symposium: Inference and Estimation in Mixed Linear Models
    Coelho, Carlos A.
    [J]. NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 1228 - 1228
  • [7] Improved likelihood inference in generalized linear models
    Vargas, Tiago M.
    Ferrari, Silvia L. P.
    Lemonte, Artur J.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 74 : 110 - 124
  • [8] Statistical inference in generalized linear mixed models: A review
    Tuerlinckx, Francis
    Rijmen, Frank
    Verbeke, Geert
    De Boeck, Paul
    [J]. BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2006, 59 : 225 - 255
  • [9] Conditional likelihood inference in generalized linear mixed models
    Sartori, N
    Severini, TA
    [J]. STATISTICA SINICA, 2004, 14 (02) : 349 - 360
  • [10] GENERALIZED FIDUCIAL INFERENCE FOR NORMAL LINEAR MIXED MODELS
    Cisewski, Jessi
    Hannig, Jan
    [J]. ANNALS OF STATISTICS, 2012, 40 (04): : 2102 - 2127