EXISTENCE OF RENORMALIZED SOLUTIONS FOR SOME ANISOTROPIC QUASILINEAR ELLIPTIC EQUATIONS

被引:0
|
作者
Ahmedatt, T. [1 ]
Ahmed, A. [1 ]
Hjiaj, H. [2 ]
Touzani, A. [1 ]
机构
[1] Univ Sidi Mohamed Ben Abdellah, Fac Sci Dhar Mahraz, Dept Math, LAMA Lab, BP 1796, Atlas Fez, Morocco
[2] Univ Abdelmalek Essaadi, Fac Sci Tetouan, Dept Math, BP 2121, Tetouan, Morocco
来源
KRAGUJEVAC JOURNAL OF MATHEMATICS | 2020年 / 44卷 / 04期
关键词
Anisotropic Sobolev spaces; variable exponents; quasilinear elliptic equations; renormalized solutions; UNIQUENESS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider a class of anisotropic quasilinear elliptic equations of the type {-Sigma(N)(i=1) partial derivative(i)a(i)(x, u, del u) + vertical bar u vertical bar(s(x)-1)u = f(x, u), in Omega, u = 0 on partial derivative Omega, where f( x, s) is a Caratheodory function which satisfies some growth condition. We prove the existence of renormalized solutions for our Dirichlet problem, and some regularity results are concluded.
引用
收藏
页码:617 / 637
页数:21
相关论文
共 50 条