Large-scale statistical parameter estimation in complex systems with an application to metabolic models

被引:20
|
作者
Calvetti, Daniela
Somersalo, Erkki
机构
[1] Case Western Reserve Univ, Dept Math, Cleveland, OH 44106 USA
[2] Case Western Reserve Univ, Ctr Modelling Integrated Metab Syst, Cleveland, OH 44106 USA
[3] Aalto Univ, Inst Math, FIN-02015 Helsinki, Finland
来源
MULTISCALE MODELING & SIMULATION | 2006年 / 5卷 / 04期
关键词
multicompartment model; Bayesian statistics; sample-based prior; Markov chain Monte Carlo; optimization; skeletal muscle; Michaelis-Menten kinetics;
D O I
10.1137/050644860
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The estimation of a large number of parameters in a complex dynamic multicompartment model in the presence of insufficient data is a difficult and challenging problem. Such problems arise in many applications, e.g., in biology, physiology, and environmental sciences. The model consists of a large system of coupled nonlinear ordinary differential equations, the data consisting of the values of few components at given observation times. The estimation problems are usually ill-posed and severely underdetermined, while the quality of the scarce data is far from optimal. Therefore, a successful solution necessarily requires additional information about the parameters. A natural framework to introduce a priori information into the model is the Bayesian paradigm. In this article we develop a Bayesian methodology that is able to utilize various types of prior constraints such as approximate algebraic constraints for the parameters or inequality constraints for the solutions and integrate them into a parametric prior distribution. The subsequent parameter estimation is based on a combination of optimization methods and statistical sampling techniques. We apply the methodology to a skeletal muscle metabolism model, in which we are able to simultaneously estimate more than 100 parameters from one fifth as many measured data points.
引用
收藏
页码:1333 / 1366
页数:34
相关论文
共 50 条
  • [1] Parameter estimation strategies for large-scale urban models
    Abraham, JE
    Hunt, JD
    TRANSPORTATION LAND USE AND SMART GROWTH: PLANNING AND ADMINISTRATION, 2000, (1722): : 9 - 16
  • [2] An optimization framework for parameter estimation of large-scale systems
    Faber, Richard
    Arellano-Garcia, Harvey
    Li, Pu
    Wozny, Guenter
    CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2007, 46 (11) : 1085 - 1095
  • [3] Parameter and State Estimation of Large-Scale Complex Systems Using Python']Python Tools
    Perera, M. Anushka S.
    Hauge, Tor Anders
    Pfeiffer, Carlos F.
    MODELING IDENTIFICATION AND CONTROL, 2015, 36 (03) : 189 - 198
  • [4] An Improved Scatter Search Algorithm for Parameter Estimation in Large-Scale Kinetic Models of Biochemical Systems
    Remli, Muhammad Akmal
    Mohamad, Mohd Saberi
    Deris, Safaai
    Sinnott, Richard
    Napis, Suhaimi
    CURRENT PROTEOMICS, 2019, 16 (05) : 427 - 438
  • [5] MAXIMUM A-POSTERIORI PARAMETER-ESTIMATION IN LARGE-SCALE SYSTEMS
    CHEMOUIL, P
    KATEBI, MR
    SASTRY, D
    SINGH, MG
    AUTOMATICA, 1981, 17 (06) : 845 - 851
  • [6] Distributed dynamic state estimation with parameter identification for large-scale systems
    Sun, Yibing
    Fu, Minyue
    Wang, Bingchang
    Zhang, Huanshui
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2017, 354 (14): : 6200 - 6216
  • [7] PARAMETER-ESTIMATION IN LARGE-SCALE SYSTEMS USING SEQUENTIAL DECOMPOSITION
    SULTAN, MA
    HASSAN, MF
    CALVET, JL
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1988, 19 (03) : 487 - 496
  • [8] Parameter estimation in large-scale systems biology models: a parallel and self-adaptive cooperative strategy
    Penas, David R.
    Gonzalez, Patricia
    Egea, Jose A.
    Doallo, Ramon
    Banga, Julio R.
    BMC BIOINFORMATICS, 2017, 18
  • [9] Parameter estimation in large-scale systems biology models: a parallel and self-adaptive cooperative strategy
    David R. Penas
    Patricia González
    Jose A. Egea
    Ramón Doallo
    Julio R. Banga
    BMC Bioinformatics, 18
  • [10] Large-scale complex IT systems
    Sommerville, Ian
    Cliff, Dave
    Calinescu, Radu
    Keen, Justin
    Kelly, Tim
    Kwiatkowska, Marta
    McDermid, John
    Paige, Richard
    Communications of the ACM, 2012, 55 (07) : 71 - 77