Computer-aided Detection of Subsolid Nodules at Chest CT: Improved Performance with Deep Learning-based CT Section Thickness Reduction
被引:22
|
作者:
Park, Sohee
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ulsan, Coll Med, Asan Med Ctr, Dept Radiol, 88 Olymp Ro 43 Gil, Seoul 138736, South Korea
Univ Ulsan, Coll Med, Asan Med Ctr, Res Inst Radiol, 88 Olymp Ro 43 Gil, Seoul 138736, South KoreaUniv Ulsan, Coll Med, Asan Med Ctr, Dept Radiol, 88 Olymp Ro 43 Gil, Seoul 138736, South Korea
Park, Sohee
[1
,2
]
Lee, Sang Min
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ulsan, Coll Med, Asan Med Ctr, Dept Radiol, 88 Olymp Ro 43 Gil, Seoul 138736, South Korea
Univ Ulsan, Coll Med, Asan Med Ctr, Res Inst Radiol, 88 Olymp Ro 43 Gil, Seoul 138736, South KoreaUniv Ulsan, Coll Med, Asan Med Ctr, Dept Radiol, 88 Olymp Ro 43 Gil, Seoul 138736, South Korea
Lee, Sang Min
[1
,2
]
论文数: 引用数:
h-index:
机构:
Kim, Wooil
[1
,2
,4
]
Park, Hyunho
论文数: 0引用数: 0
h-index: 0
机构:
VUNO, Seoul, South KoreaUniv Ulsan, Coll Med, Asan Med Ctr, Dept Radiol, 88 Olymp Ro 43 Gil, Seoul 138736, South Korea
Park, Hyunho
[3
]
Jung, Kyu-Hwan
论文数: 0引用数: 0
h-index: 0
机构:
VUNO, Seoul, South KoreaUniv Ulsan, Coll Med, Asan Med Ctr, Dept Radiol, 88 Olymp Ro 43 Gil, Seoul 138736, South Korea
Jung, Kyu-Hwan
[3
]
Do, Kyung-Hyun
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ulsan, Coll Med, Asan Med Ctr, Dept Radiol, 88 Olymp Ro 43 Gil, Seoul 138736, South Korea
Univ Ulsan, Coll Med, Asan Med Ctr, Res Inst Radiol, 88 Olymp Ro 43 Gil, Seoul 138736, South KoreaUniv Ulsan, Coll Med, Asan Med Ctr, Dept Radiol, 88 Olymp Ro 43 Gil, Seoul 138736, South Korea
Do, Kyung-Hyun
[1
,2
]
Seo, Joon Beom
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ulsan, Coll Med, Asan Med Ctr, Dept Radiol, 88 Olymp Ro 43 Gil, Seoul 138736, South Korea
Univ Ulsan, Coll Med, Asan Med Ctr, Res Inst Radiol, 88 Olymp Ro 43 Gil, Seoul 138736, South KoreaUniv Ulsan, Coll Med, Asan Med Ctr, Dept Radiol, 88 Olymp Ro 43 Gil, Seoul 138736, South Korea
Seo, Joon Beom
[1
,2
]
机构:
[1] Univ Ulsan, Coll Med, Asan Med Ctr, Dept Radiol, 88 Olymp Ro 43 Gil, Seoul 138736, South Korea
[2] Univ Ulsan, Coll Med, Asan Med Ctr, Res Inst Radiol, 88 Olymp Ro 43 Gil, Seoul 138736, South Korea
[3] VUNO, Seoul, South Korea
[4] Univ Virginia Hlth Syst, Dept Radiol & Med Imaging, Charlottesville, VA USA
Background: Studies on the optimal CT section thickness for detecting subsolid nodules (SSNs) with computer-aided detection (CAD) are lacking. Purpose: To assess the effect of CT section thickness on CAD performance in the detection of SSNs and to investigate whether deep learning-based super-resolution algorithms for reducing CT section thickness can improve performance. Materials and Methods: CT images obtained with 1-, 3-, and 5-mm-thick sections were obtained in patients who underwent surgery between March 2018 and December 2018. Patients with resected synchronous SSNs and those without SSNs (negative controls) were retrospectively evaluated. The SSNs, which ranged from 6 to 30 mm, were labeled ground-truth lesions. A deep learning-based CAD system was applied to SSN detection on CT images of each section thickness and those converted from 3- and 5-mm section thickness into 1-mm section thickness by using the super-resolution algorithm. The CAD performance on each section thickness was evaluated and compared by using the jackknife alternative free response receiver operating characteristic figure of merit. Results: A total of 308 patients (mean age 6 standard deviation, 62 years 6 10; 183 women) with 424 SSNs (310 part-solid and 114 nonsolid nodules) and 182 patients without SSNs (mean age, 65 years 6 10; 97 men) were evaluated. The figures of merit differed across the three section thicknesses (0.92, 0.90, and 0.89 for 1, 3, and 5 mm, respectively; P = .04) and between 1- and 5-mm sections (P = .04). The figures of merit varied for nonsolid nodules (0.78, 0.72, and 0.66 for 1, 3, and 5 mm, respectively; P < .001) but not for part-solid nodules (range, 0.93-0.94; P = .76). The super-resolution algorithm improved CAD sensitivity on 3- and 5-mm-thick sections (P = .02 for 3 mm, P < .001 for 5 mm). Conclusion: Computer-aided detection (CAD) of subsolid nodules performed better at 1-mm section thickness CT than at 3- and 5-mm section thickness CT, particularly with nonsolid nodules. Application of a super-resolution algorithm improved the sensitivity of CAD at 3- and 5-mm section thickness CT. (C) RSNA, 2021
机构:
Vuno Inc, Seoul 06541, South Korea
Seoul Natl Univ, Grad Sch Convergence Sci & Technol, Dept Appl Bioengn, Seoul 08826, South KoreaVuno Inc, Seoul 06541, South Korea
Jeong, Jonghun
Park, Doohyun
论文数: 0引用数: 0
h-index: 0
机构:
Vuno Inc, Seoul 06541, South KoreaVuno Inc, Seoul 06541, South Korea
Park, Doohyun
Kang, Jung-Hyun
论文数: 0引用数: 0
h-index: 0
机构:
Vuno Inc, Seoul 06541, South KoreaVuno Inc, Seoul 06541, South Korea
Kang, Jung-Hyun
Kim, Myungsub
论文数: 0引用数: 0
h-index: 0
机构:
Sungkyunkwan Univ, Sch Med, Kangbuk Samsung Hosp, Dept Radiol, Seoul 03181, South KoreaVuno Inc, Seoul 06541, South Korea
Kim, Myungsub
Kim, Hwa-Young
论文数: 0引用数: 0
h-index: 0
机构:
CHA Univ, CHA Gangnam Med Ctr, Dept Radiol, Seoul 06125, South KoreaVuno Inc, Seoul 06541, South Korea
Kim, Hwa-Young
Choi, Woosuk
论文数: 0引用数: 0
h-index: 0
机构:
Sungkyunkwan Univ, Sch Med, Kangbuk Samsung Hosp, Dept Radiol, Seoul 03181, South KoreaVuno Inc, Seoul 06541, South Korea
机构:
NYU, Langone Med Ctr, Dept Radiol, New York, NY 10006 USA
Univ Texas MD Anderson Canc Ctr, Dept Radiol, Houston, TX 77030 USANYU, Langone Med Ctr, Dept Radiol, New York, NY 10006 USA
Godoy, Myrna C. B.
Kim, Tae Jung
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Dept Radiol, Bundang Hosp, Seoul, South KoreaNYU, Langone Med Ctr, Dept Radiol, New York, NY 10006 USA
Kim, Tae Jung
White, Charles S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Maryland, Med Ctr, Dept Radiol, Baltimore, MD 21201 USANYU, Langone Med Ctr, Dept Radiol, New York, NY 10006 USA
White, Charles S.
Bogoni, Luca
论文数: 0引用数: 0
h-index: 0
机构:
Siemens Healthcare, Comp Aided Diag & Therapy, Malvern, PA USANYU, Langone Med Ctr, Dept Radiol, New York, NY 10006 USA
Bogoni, Luca
de Groot, Patricia
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Langone Med Ctr, Dept Radiol, New York, NY 10006 USA
Univ Texas MD Anderson Canc Ctr, Dept Radiol, Houston, TX 77030 USANYU, Langone Med Ctr, Dept Radiol, New York, NY 10006 USA
de Groot, Patricia
Florin, Charles
论文数: 0引用数: 0
h-index: 0
机构:
Univ Texas MD Anderson Canc Ctr, Dept Radiol, Houston, TX 77030 USA
Siemens Healthcare, Comp Aided Diag & Therapy, Malvern, PA USANYU, Langone Med Ctr, Dept Radiol, New York, NY 10006 USA
Florin, Charles
Obuchowski, Nancy
论文数: 0引用数: 0
h-index: 0
机构:
Cleveland Clin Fdn, Cleveland, OH 44195 USANYU, Langone Med Ctr, Dept Radiol, New York, NY 10006 USA
Obuchowski, Nancy
Babb, James S.
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Langone Med Ctr, Dept Radiol, New York, NY 10006 USANYU, Langone Med Ctr, Dept Radiol, New York, NY 10006 USA
Babb, James S.
Salganicoff, Marcos
论文数: 0引用数: 0
h-index: 0
机构:
Siemens Healthcare, Comp Aided Diag & Therapy, Malvern, PA USANYU, Langone Med Ctr, Dept Radiol, New York, NY 10006 USA
Salganicoff, Marcos
Naidich, David P.
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Langone Med Ctr, Dept Radiol, New York, NY 10006 USANYU, Langone Med Ctr, Dept Radiol, New York, NY 10006 USA
Naidich, David P.
Anand, Vikram
论文数: 0引用数: 0
h-index: 0
机构:
Siemens Healthcare, Comp Aided Diag & Therapy, Malvern, PA USANYU, Langone Med Ctr, Dept Radiol, New York, NY 10006 USA
Anand, Vikram
Park, Sangmin
论文数: 0引用数: 0
h-index: 0
机构:
Siemens Healthcare, Comp Aided Diag & Therapy, Malvern, PA USANYU, Langone Med Ctr, Dept Radiol, New York, NY 10006 USA
Park, Sangmin
Vlahos, Ioannis
论文数: 0引用数: 0
h-index: 0
机构:
St Georges Healthcare NHS Trust, Dept Radiol, London, EnglandNYU, Langone Med Ctr, Dept Radiol, New York, NY 10006 USA
Vlahos, Ioannis
Ko, Jane P.
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Langone Med Ctr, Dept Radiol, New York, NY 10006 USANYU, Langone Med Ctr, Dept Radiol, New York, NY 10006 USA