Mean ergodic theorems for power bounded measures

被引:1
|
作者
Mustafayev, Heybetkulu [1 ]
Sevli, Hamdullah [1 ]
机构
[1] Van Yuzuncu Yil Univ, Fac Sci, Dept Math, Van, Turkey
关键词
Locally compact (abelian) group; Group algebra; Measure algebra; Convolution operator; Regular matrix; Mean ergodic theorem;
D O I
10.1016/j.jmaa.2021.125090
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a locally compact abelian group and let M(G) be the convolution measure algebra of G. A measure mu is an element of M(G) is said to be power bounded if sup(n >= 0) parallel to mu(n)parallel to(1) < infinity, where mu(n) denotes nth convolution power of mu. We show that if mu is an element of M(G) is power bounded and A = [a(n,k)](n,k=0)(infinity) is a strongly regular matrix, then the limit lim(n ->infinity) Sigma(infinity)(k=0) a(n,k) mu(k) exists in the weak* topology of M(G) and is equal to the idempotent measure theta, where (theta) over cap = 1(int)F(mu). Here, (theta) over cap is the Fourier-Stieltjes transform of theta, F-mu :={gamma is an element of Gamma : (mu) over cap(gamma) = 1}, and 1(int) F-mu is the characteristic function of int F-mu. Some applications are also given. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] MEAN BOUNDED OPERATORS AND MEAN ERGODIC-THEOREMS
    EMILION, R
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1983, 296 (15): : 641 - 643
  • [2] Weight ergodic theorems for power bounded measures on locally compact groups
    Mustafayev, Heybetkulu
    NEW YORK JOURNAL OF MATHEMATICS, 2024, 30 : 1056 - 1078
  • [3] MEAN-BOUNDED OPERATORS AND MEAN ERGODIC-THEOREMS
    EMILION, R
    JOURNAL OF FUNCTIONAL ANALYSIS, 1985, 61 (01) : 1 - 14
  • [4] Power bounded operators and the mean ergodic theorem for subsequences
    Eisner, Tanja
    Mueller, Vladimir
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 493 (01)
  • [5] MEAN ERGODIC CONVERGENCE THEOREMS
    BRAY, G
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1969, 25 (03) : 471 - &
  • [6] ON RATES IN MEAN ERGODIC THEOREMS
    Gomilko, Alexander
    Haase, Markus
    Tomilov, Yuri
    MATHEMATICAL RESEARCH LETTERS, 2011, 18 (02) : 201 - 213
  • [7] MEAN CONVERGENCE FOR ERGODIC THEOREMS
    ANZAI, K
    PROCEEDINGS OF THE JAPAN ACADEMY, 1977, 53 (01): : 34 - 37
  • [8] ERGODIC THEOREMS OF MEAN CONVERGENCE
    BRAY, G
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1968, 267 (12): : 418 - &
  • [9] MEAN ERGODIC TYPE THEOREMS
    Oguz, G.
    Orhan, C.
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2019, 68 (02): : 2264 - 2271
  • [10] MEAN ERGODIC CONVERGENCE THEOREMS
    BRAY, G
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1968, 267 (17): : 602 - &