Evaluation of Gas Permeability for Micro-scale Thin Polymer Film with Encapsulated MEMS Damped Oscillator

被引:0
|
作者
Gando, Ryunosuke [1 ]
Nakamura, Naofumi [1 ]
Hayashi, Yumi [1 ]
Ono, Daiki [1 ]
Masunishi, Kei [2 ]
Tomizawa, Yasushi [2 ]
Yamazaki, Hiroaki [1 ]
Ikehashi, Tamio [1 ]
Sugizaki, Yoshiaki [1 ]
Shibata, Hideki [1 ]
机构
[1] Toshiba Co Ltd, Semicond & Storage Prod Co, Ctr Semicond Res & Dev, Saiwai Ku, 1 Komukai Toshiba Cho, Kawasaki, Kanagawa 2128583, Japan
[2] Toshiba Co Ltd, Ctr Res & Dev, Saiwai Ku, Kawasaki, Kanagawa 2128583, Japan
来源
2014 IEEE SENSORS | 2014年
关键词
polymer film; gas permeability; MEMS; damping oscillation; Quality factotr; PERMEATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a practical method to evaluate gas permeability for thin polymer films using an encapsulated micro-electro-mechanical-system (MEMS) oscillator. Previously, we have developed a hermetic thin-film dome structure for RF-MEMS tunable capacitor, using conventional back-end-of-the-line (BEOL) processes. The dome is made of multiple layers including a polymer film, whose gas permeability is an important factor with respect to productivity and reliability. So far, it had been difficult to evaluate the gas permeability for such small and thin polymer films with sub-millimeter diameter and micron-scale thickness. In this evaluation method, the pressure dependence of air-damping oscillation is used to measure the permeability. As a demonstration, we carried out a permeability measurement of a 0.5-mm-diameter dome sealed with a thin (1 mu m) polymer film. The resulting permeability coefficient is found to be 1X10(-16) mol/m/Pa/s, at room temperature.
引用
收藏
页数:4
相关论文
共 32 条
  • [1] A Fully Integrated, MEMS Based, Micro-Scale Printer for Cryogenic Thin Film Structures
    Lally, Richard
    Imboden, Matthias
    Stange, Alexander
    Barrett, Lawrence K.
    Perez-Morelo, Diego J.
    Bishop, David J.
    JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2023, 32 (01) : 126 - 135
  • [2] WEAR BEHAVIOR OF NITI THIN FILM AT MICRO-SCALE
    Ng, K. L.
    Sun, Q. P.
    Tomozawa, M.
    Miyazak, S.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2010, 24 (1-2): : 85 - 93
  • [3] Micro-scale delaminating and buckling of thin film on soft substrate
    Wu, Dan
    Xie, Huimin
    Yin, Yajun
    Tang, Minjin
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2013, 23 (03)
  • [4] EXPERIMENTAL CHARACTERIZATION OF A MICRO-SCALE THIN FILM EVAPORATIVE COOLING DEVICE
    Narayanan, Shankar
    Fedorov, Andrei G.
    Joshi, Yogendra K.
    2010 12TH IEEE INTERSOCIETY CONFERENCE ON THERMAL AND THERMOMECHANICAL PHENOMENA IN ELECTRONIC SYSTEMS, 2010,
  • [5] ELECTRIC CONDUCTIVITY OF Sb/Se THIN FILM MICRO-SCALE STRUCTURES
    Shiman, O.
    Gerbreder, V.
    Sledevsky, E.
    Bulanov, A.
    LATVIAN JOURNAL OF PHYSICS AND TECHNICAL SCIENCES, 2011, 48 (01) : 62 - 68
  • [6] Calculation and testing of micro-scale gas film stiffness in the spiral groove gas seal
    Ding, Xuexing
    Su, Hong
    Zhang, Haizhou
    Zhao, Fang
    Zhang, Weizheng
    Ding, X. (dingxxl@163.com), 2013, Nanjing University of Aeronautics an Astronautics (33): : 81 - 86
  • [7] DESIGN OF A MICRO-SCALE MAGNETOSTRICTIVE ASYMMETRIC THIN FILM BIMORPH (μMAB) MICROROBOT
    Jing, Wuming
    Chen, Xi
    Lyttle, Sean
    Fu, Zhenbo
    Shi, Yong
    Cappelleri, David J.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION (IMECE 2010), VOL 10, 2012, : 599 - 607
  • [8] Entropy minimization in micro-scale evaporating thin liquid film in capillary tubes
    Rama Subba Reddy Gorla
    Larry W. Byrd
    David M. Pratt
    Heat and Mass Transfer, 2008, 45 : 131 - 138
  • [9] Entropy minimization in micro-scale evaporating thin liquid film in capillary tubes
    Gorla, Rama Subba Reddy
    Byrd, Larry W.
    Pratt, David M.
    HEAT AND MASS TRANSFER, 2008, 45 (02) : 131 - 138
  • [10] Predicting Three-Dimensional Inertial Thin Film Flow over Micro-Scale Topography
    Veremieiev, Sergii
    Gaskell, Philip H.
    Lee, Yeaw Chu
    Thompson, Harvey M.
    COMPUTATIONAL FLUID DYNAMICS 2010, 2011, : 833 - 838