Balanced arrays from quadratic functions

被引:1
|
作者
Fuji-Hara, R
Miyamoto, N
机构
[1] Univ Tsukuba, Tsukuba, Ibaraki 3058573, Japan
[2] Univ Tsukuba, Grad Sch Syst Management, Tokyo 1120012, Japan
关键词
D O I
10.1016/S0378-3758(99)00112-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
There is a famous construction of orthogonal arrays by Bose (1947, Sankhya 8, 107-166). Thr construction uses linear transformations over a finite field. We generalize this method by considering non-linear functions instead of linear transformations and a subset of a vector space as their domains. We show here constructions of orthogonal and balanced arrays by using quadratic functions over finite fields of even prime power orders. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:285 / 293
页数:9
相关论文
共 50 条
  • [1] Classification of Balanced Quadratic Functions
    De Meyer, Lauren
    Bilgin, Begul
    IACR TRANSACTIONS ON SYMMETRIC CRYPTOLOGY, 2019, 2019 (02) : 169 - 192
  • [2] On the linear structures of balanced functions and quadratic APN functions
    Musukwa, A.
    Sala, M.
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2020, 12 (05): : 859 - 880
  • [3] On the linear structures of balanced functions and quadratic APN functions
    A. Musukwa
    M. Sala
    Cryptography and Communications, 2020, 12 : 859 - 880
  • [4] Quadratic zero-difference balanced functions, APN functions and strongly regular graphs
    Claude Carlet
    Guang Gong
    Yin Tan
    Designs, Codes and Cryptography, 2016, 78 : 629 - 654
  • [5] Quadratic zero-difference balanced functions, APN functions and strongly regular graphs
    Carlet, Claude
    Gong, Guang
    Tan, Yin
    DESIGNS CODES AND CRYPTOGRAPHY, 2016, 78 (03) : 629 - 654
  • [6] From quadratic functions to modular functions
    Zagier, D
    NUMBER THEORY IN PROGRESS, VOLS 1 AND 2: VOL 1: DIOPHANTINE PROBLEMS AND POLYNOMIALS; VOL 2: ELEMENTARY AND ANALYTIC NUMBER THEORY;, 1999, : 1147 - 1178
  • [7] Balanced nested designs and balanced arrays
    Fuji-Hara, R
    Kageyama, S
    Kuriki, S
    Miao, Y
    Shinohara, S
    DISCRETE MATHEMATICS, 2002, 259 (1-3) : 91 - 119
  • [8] BALANCED INCOMPLETE ARRAYS
    GILL, PS
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1986, 14 (02) : 179 - 185
  • [9] PARTIALLY BALANCED ARRAYS
    CHAKRAVARTI, IM
    ANNALS OF MATHEMATICAL STATISTICS, 1960, 31 (02): : 531 - 532
  • [10] Balanced arrays of strength two from block designs
    Sinha, K
    Dhar, V
    Saha, GM
    Kageyama, S
    JOURNAL OF COMBINATORIAL DESIGNS, 2002, 10 (05) : 303 - 312