Biclustering analysis of transcriptome big data identifies condition-specific microRNA targets

被引:13
|
作者
Yoon, Sora [1 ]
Nguyen, Hai C. T. [1 ]
Jo, Woobeen [1 ]
Kim, Jinhwan [1 ]
Chi, Sang-Mun [2 ]
Park, Jiyoung [1 ]
Kim, Seon-Young [3 ,4 ]
Nam, Dougu [1 ,5 ]
机构
[1] Ulsan Natl Inst Sci & Technol, Sch Life Sci, Ulsan 44919, South Korea
[2] Kyungsung Univ, Sch Comp Sci & Engn, Busan 48434, South Korea
[3] UST, Dept Funct Genom, Daejeon 34141, South Korea
[4] KRIBB, Personalized Genom Med Res Ctr, Genome Editing Res Ctr, Daejeon 34141, South Korea
[5] Ulsan Natl Inst Sci & Technol, Dept Math Sci, Ulsan 44919, South Korea
基金
新加坡国家研究基金会;
关键词
GENE-EXPRESSION; REGULATORY MODULES; MIRNA; PREDICTION; PATHWAY; CANCER;
D O I
10.1093/nar/gkz139
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We present a novel approach to identify human microRNA (miRNA) regulatory modules (mRNA targets and relevant cell conditions) by biclustering a large collection of mRNA fold-change data for sequence-specific targets. Bicluster targets were assessed using validated messenger RNA (mRNA) targets and exhibited on an average 17.0% (median improved gain in certainty (sensitivity + specificity). The net gain was further increased up to 32.0% (median 33.4%) by incorporating functional networks of targets. We analyzed cancer-specific biclusters and found that the PI3K/Akt signaling pathway is strongly enriched with targets of a few miRNAs in breast cancer and diffuse large B-cell lymphoma. Indeed, five independent prognostic miRNAs were identified, and repression of bicluster targets and pathway activity by miR-29 was experimentally validated. In total, 29 898 biclusters for 459 human miRNAs were collected in the BiMIR database where biclusters are searchable for miRNAs, tissues, diseases, keywords and target genes.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] CSmiRTar: Condition-Specific microRNA targets database
    Wu, Wei-Sheng
    Tu, Bor-Wen
    Chen, Tsung-Te
    Hou, Shang-Wei
    Tseng, Joseph T.
    PLOS ONE, 2017, 12 (07):
  • [2] mirConnX: condition-specific mRNA-microRNA network integrator
    Huang, Grace T.
    Athanassiou, Charalambos
    Benos, Panayiotis V.
    NUCLEIC ACIDS RESEARCH, 2011, 39 : W416 - W423
  • [3] mirTime: identifying condition-specific targets of microRNA in time-series transcript data using Gaussian process model and spherical vector clustering
    Kang, Hyejin
    Ahn, Hongryul
    Jo, Kyuri
    Oh, Minsik
    Kim, Sun
    BIOINFORMATICS, 2021, 37 (11) : 1544 - 1553
  • [4] A Local Genetic Algorithm for the Identification of Condition-Specific MicroRNA-Gene Modules
    Mu, Wenbo
    Roqueiro, Damian
    Dai, Yang
    SCIENTIFIC WORLD JOURNAL, 2013,
  • [5] Inferring condition-specific targets of human TF-TF complexes using ChIP-seq data
    Chia-Chun Yang
    Min-Hsuan Chen
    Sheng-Yi Lin
    Erik H. Andrews
    Chao Cheng
    Chun-Chi Liu
    Jeremy J.W. Chen
    BMC Genomics, 18
  • [6] Can condition-specific health surveys be specific to spine disease? An analysis of the effect of comorbidities on baseline condition-specific and general health survey scores
    Slover, James
    Abdu, William A.
    Hanscom, Brett
    Lurie, Jon
    Weinstein, James N.
    SPINE, 2006, 31 (11) : 1265 - 1271
  • [7] Inferring condition-specific targets of human TF-TF complexes using ChIP-seq data
    Yang, Chia-Chun
    Chen, Min-Hsuan
    Lin, Sheng-Yi
    Andrews, Erik H.
    Cheng, Chao
    Liu, Chun-Chi
    Chen, Jeremy J. W.
    BMC GENOMICS, 2017, 18
  • [8] Joint Bayesian inference of condition-specific miRNA and transcription factor activities from combined gene and microRNA expression data
    Zacher, Benedikt
    Abnaof, Khalid
    Gade, Stephan
    Younesi, Erfan
    Tresch, Achim
    Froehlich, Holger
    BIOINFORMATICS, 2012, 28 (13) : 1714 - 1720
  • [9] Differential Expression Analysis Utilizing Condition-Specific Metabolic Pathways
    Mattei, Gianluca
    Gan, Zhuohui
    Ramazzotti, Matteo
    Palsson, Bernhard O.
    Zielinski, Daniel C.
    METABOLITES, 2023, 13 (11)
  • [10] Global Analysis of Condition-specific Subcellular Protein Distribution and Abundance
    Jung, Sunhee
    Smith, Jennifer J.
    von Haller, Priska D.
    Dilworth, David J.
    Sitko, Katherine A.
    Miller, Leslie R.
    Saleem, Ramsey A.
    Goodlett, David R.
    Aitchison, John D.
    MOLECULAR & CELLULAR PROTEOMICS, 2013, 12 (05) : 1421 - 1435