Message Passing-based Inference in Switching Autoregressive Models

被引:0
|
作者
Podusenko, Albert [1 ]
van Erp, Ban [1 ]
Bagaev, Dmitry [1 ]
Senoz, Ismail [1 ]
de Vries, Bert [1 ]
机构
[1] Eindhoven Univ Technol, Dept Elect Engn, Eindhoven, Netherlands
关键词
Message Passing; State Estimation; Switching Autoregressive Models; Variational Inference; SPEECH ENHANCEMENT; GRAPHS;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The switching autoregressive model is a flexible model for signals generated by non-stationary processes. Unfortunately, evaluation of the exact posterior distributions of the latent variables for a switching autoregressive model is analytically intractable, and this limits the applicability of switching autoregressive models in practical signal processing tasks. In this paper we present a message passing-based approach for computing approximate posterior distributions in the switching autoregressive model. Our solution tracks approximate posterior distributions in a modular way and easily extends to more complicated model variations. The proposed message passing algorithm is verified and validated on synthetic and acoustic data sets respectively.
引用
收藏
页码:1497 / 1501
页数:5
相关论文
共 50 条
  • [1] Message Passing-Based Inference for Time-Varying Autoregressive Models
    Podusenko, Albert
    Kouw, Wouter M.
    de Vries, Bert
    [J]. ENTROPY, 2021, 23 (06)
  • [2] MESSAGE PASSING-BASED INFERENCE IN THE GAMMA MIXTURE MODEL
    Podusenko, Albert
    van Erp, Bart
    Bagaev, Dmitry
    Senoz, Ismail
    de Vries, Bert
    [J]. 2021 IEEE 31ST INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2021,
  • [3] Online Message Passing-based Inference in the Hierarchical Gaussian Filter
    Senoz, Ismail
    de Vries, Bert
    [J]. 2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 2676 - 2681
  • [4] Message Passing-based System Identification for NARMAX Models
    Podusenko, Albert
    Akbayrak, Semih
    Senoz, Ismail
    Schoukens, Maarten
    Kouw, Wouter M.
    [J]. 2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 7309 - 7314
  • [5] Efficient Message Passing-Based Inference in the Multiple Measurement Vector Problem
    Ziniel, Justin
    Schniter, Philip
    [J]. 2011 CONFERENCE RECORD OF THE FORTY-FIFTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS (ASILOMAR), 2011, : 1447 - 1451
  • [6] Approximate Message Passing-Based Detection for Asynchronous NOMA
    Lin, Xincong
    Kuang, Linling
    Ni, Zuyao
    Jiang, Chunxiao
    Wu, Sheng
    [J]. IEEE COMMUNICATIONS LETTERS, 2020, 24 (03) : 534 - 538
  • [7] MESSAGE PASSING-BASED COOPERATIVE LOCALIZATION WITH EMBEDDED PARTICLE FLOW
    Wielandner, Lukas
    Leitinger, Erik
    Meyer, Florian
    Teague, Bryan
    Witrisal, Klaus
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 5652 - 5656
  • [8] Online Variational Message Passing in Hierarchical Autoregressive Models
    Podusenko, Albert
    Kouw, Wouter M.
    de Vries, Bert
    [J]. 2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 1337 - 1342
  • [9] A formal semantics for debugging synchronous message passing-based concurrent programs
    LI He
    LUO Jie
    LI Wei
    [J]. Science China(Information Sciences), 2014, 57 (12) : 198 - 215
  • [10] Message Passing-Based Decoding of Convolutional Codes: Performance and Complexity Analysis
    Mani, Hossein
    Saeedi, Hamid
    [J]. IEEE COMMUNICATIONS LETTERS, 2016, 20 (02) : 216 - 219