Conditional Lie-Backlund symmetries to inhomogeneous nonlinear diffusion equations

被引:0
|
作者
Di, Yanmei [1 ]
Zhang, Danda [1 ]
Shen, Shoufeng [1 ]
Zhang, Jun [1 ]
机构
[1] Zhejiang Univ Technol, Dept Appl Math, Hangzhou 310023, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Conditional Lie-Backlund symmetry; Invariant subspace; Nonlinear diffusion equation; Finite-dimensional dynamical system; BOUSSINESQ EQUATION; DIFFERENTIAL-EQUATIONS; SIMILARITY REDUCTIONS; POTENTIAL SYMMETRIES; GROUP CLASSIFICATION; CONVECTION; ABSORPTION;
D O I
10.1016/j.apm.2014.02.020
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, conditional Lie-Backlund symmetry method is used to classify a class of inhomogeneous nonlinear diffusion equations u(t) = e(-qx)(e(px)w(u)u(x))(x). Equations admitted conditional Lie-Backlund symmetries can be either solved exactly or reduced to finite-dimensional dynamical systems. A number of concrete examples defined on the exponential and trigonometric invariant subspaces are considered to illustrate this method. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:4409 / 4416
页数:8
相关论文
共 50 条