MONTE CARLO METHODS FOR BACKWARD EQUATIONS IN NONLINEAR FILTERING

被引:0
|
作者
Milstein, G. N. [1 ]
Tretyakov, M. V. [2 ]
机构
[1] Ural State Univ, Ekaterinburg 620083, Russia
[2] Univ Leicester, Dept Math, Leicester LE1 7RH, Leics, England
基金
英国工程与自然科学研究理事会;
关键词
Pathwise filtering equation; stochastic partial differential equation; Monte Carlo technique; Kallianpur-Striebel formula; mean-square and weak numerical methods; PARTICLE APPROXIMATION;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider Monte Carlo methods for the classical nonlinear filtering problem. The first method is based on a backward pathwise filtering equation and the second method is related to a backward linear stochastic partial differential equation. We study convergence of the proposed numerical algorithms. The considered methods have Such advantages as a capability in principle to solve filtering problems of large dimensionality, reliable error control, and recurrency. Their efficiency is achieved due to the numerical procedures which use effective numerical schemes and variance reduction techniques. The results obtained are supported by numerical experiments.
引用
收藏
页码:63 / 100
页数:38
相关论文
共 50 条
  • [1] Monte Carlo methods for a special nonlinear filtering problem
    Stepanov, OA
    Ivanov, VM
    Korenevski, ML
    [J]. CONTROL APPLICATIONS OF OPTIMIZATION 2000, VOLS 1 AND 2, 2000, : 347 - 352
  • [2] Nonlinear filtering with quasi-Monte Carlo methods
    Daum, F
    Huang, J
    [J]. SIGNAL AND DATA PROCESSING OF SMALL TARGETS 2003, 2003, 5204 : 458 - 479
  • [3] MONTE CARLO METHODS FOR PREDICTION AND FILTERING OF NONLINEAR STOCHASTIC PROCESSES
    HANDSCHI.JE
    [J]. BRENNSTOFF-WARME-KRAFT, 1969, 21 (11): : 591 - &
  • [4] APPLICATION OF MONTE-CARLO METHODS TO NONLINEAR FILTERING PROBLEM
    YOSHIMURA, T
    SOEDA, T
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1972, AC17 (05) : 681 - +
  • [5] Backward Simulation Methods for Monte Carlo Statistical Inference
    Lindsten, Fredrik
    Schon, Thomas B.
    [J]. FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2013, 6 (01): : 1 - 143
  • [6] MONTE-CARLO METHODS FOR THE SOLUTION OF NONLINEAR PARTIAL-DIFFERENTIAL EQUATIONS
    MARSHALL, G
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 1989, 56 (01) : 51 - 61
  • [7] NONLINEAR FILTERING - MONTE-CARLO PARTICLE RESOLUTION
    DELMORAL, P
    SALUT, G
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 320 (09): : 1147 - 1152
  • [8] Sequential Monte Carlo Filtering for Nonlinear GNSS Trajectories
    Alkhatib, H.
    Paffenholz, J. -A.
    Kutterer, H.
    [J]. VII HOTINE-MARUSSI SYMPOSIUM ON MATHEMATICAL GEODESY, 2012, 137 : 81 - 86
  • [9] Rao-Blackwellization of Particle Markov Chain Monte Carlo Methods Using Forward Filtering Backward Sampling
    Olsson, Jimmy
    Ryden, Tobias
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (10) : 4606 - 4619
  • [10] On sequential Monte Carlo sampling methods for Bayesian filtering
    Arnaud Doucet
    Simon Godsill
    Christophe Andrieu
    [J]. Statistics and Computing, 2000, 10 : 197 - 208