共 50 条
Lieb-Thirring type inequalities for non-self-adjoint perturbations of magnetic Schrodinger operators
被引:16
|作者:
Sambou, Diomba
[1
]
机构:
[1] Univ Bordeaux 1, Inst Math Bordeaux, F-33405 Talence, France
关键词:
Magnetic Schrodinger operators;
Lieb-Thirring type inequalities;
Non-self-adjoint relatively compact perturbations;
EIGENVALUE ASYMPTOTICS;
D O I:
10.1016/j.jfa.2014.02.020
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let H := Ho + V and Hi := H-0,H-perpendicular to + V be respectively perturbations of the unperturbed Schrodinger operators Ho on L-2 (R-3) and H-0,H-perpendicular to on L2 (R-2) with constant magnetic field of strength b > 0, and V a complex relatively compact perturbation. We prove Lieb-Thirring type inequalities on the discrete spectrum of H and Hi. In particular, these estimates give a priori information on the distribution of eigenvalues around the Landau levels of the operator, and describe how fast sequences of eigenvalues converge. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:5016 / 5044
页数:29
相关论文