Diagonalizations of dense families

被引:18
|
作者
Bonanzinga, Maddalena [1 ]
Cammaroto, Filippo [1 ]
Pansera, Bruno Antonio [1 ]
Tsaban, Boaz [2 ]
机构
[1] Univ Messina, Dipartimento Matemat, I-98166 Messina, Italy
[2] Bar Ilan Univ, Dept Math, IL-5290002 Ramat Gan, Israel
关键词
Dense families; Selection principles; S-fin; (O; O); Hurewicz property; Menger property; S-1(O; C; Rothberger property; (D; D); M-separable; Selectively separable; SS; S-1; S-1(D; R-separable; (D-o; Tiny sequence; 1-tiny sequence; Selectively c.c.c; Weakly Hurewicz; Weakly Menger; Weakly C; Weakly Rothberger; PIXLEY-ROY SPACES; SELECTIVE SEPARABILITY; OPEN COVERS; COMBINATORICS; SETS;
D O I
10.1016/j.topol.2014.01.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a unified framework for the study of classic and new properties involving diagonalizations of dense families in topological spaces. We provide complete classification of these properties. Our classification draws upon a large number of methods and constructions scattered in the literature, and on several novel results concerning the classic properties. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:12 / 25
页数:14
相关论文
共 50 条
  • [1] ALMOST DISJOINT FAMILIES AND DIAGONALIZATIONS OF LENGTH CONTINUUM
    Raghavan, Dilip
    BULLETIN OF SYMBOLIC LOGIC, 2010, 16 (02) : 240 - 260
  • [2] Groupwise dense families
    Heike Mildenberger
    Archive for Mathematical Logic, 2001, 40 : 93 - 112
  • [3] Groupwise dense families
    Mildenberger, H
    ARCHIVE FOR MATHEMATICAL LOGIC, 2001, 40 (02) : 93 - 112
  • [4] Diagonalizations on a correlated basis
    Siljamäki, S
    Harju, A
    Räsänen, E
    Suorsa, J
    Nieminen, RM
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2005, 26 (1-4): : 441 - 445
  • [5] MINIMAX RESULTS ON DENSE SETS AND DENSE FAMILIES OF FUNCTIONALS
    Laszlo, Szilard
    SIAM JOURNAL ON OPTIMIZATION, 2017, 27 (02) : 661 - 685
  • [6] DENSE HIERARCHIES OF GRAMMATICAL FAMILIES
    MAURER, HA
    SALOMAA, A
    WOOD, D
    JOURNAL OF THE ACM, 1982, 29 (01) : 118 - 126
  • [7] COLOR-FAMILIES ARE DENSE
    WELZL, E
    THEORETICAL COMPUTER SCIENCE, 1982, 17 (01) : 29 - 41
  • [8] A tale of three diagonalizations
    Haber, Howard E.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2021, 36 (04):
  • [9] Additivity properties of topological diagonalizations
    Bartoszynski, T
    Shelah, S
    Tsaban, B
    JOURNAL OF SYMBOLIC LOGIC, 2003, 68 (04) : 1254 - 1260
  • [10] Chromaticity of some families of dense graphs
    Dong, FM
    Teo, KL
    Little, CHC
    Hendy, MD
    DISCRETE MATHEMATICS, 2002, 258 (1-3) : 303 - 321