Characterization of MiFUT11 from Mangifera indica L.: A functional core α1, 3-fucosyltransferase potentially involved in the biosynthesis of immunogenic carbohydrates in mango fruit

被引:2
|
作者
Okada, Takahiro [1 ]
Ihara, Hideyuki [1 ]
Ikeda, Yoshitaka [1 ]
机构
[1] Saga Univ, Fac Med, Dept Biomol Sci, Div Mol Cell Biol, 5-1-1 Nabeshima, Saga 8498501, Japan
关键词
Mangifera indica L; Anacardiaceae; Mango; FUT11; Core alpha 1,3-fucosyltransferase; Cross-reactive carbohydrate epitope; MOLECULAR-CLONING; SUBSTRATE-SPECIFICITY; FUCOSYL-TRANSFERASE; INSECT CELLS; N-GLYCAN; MAJOR ALLERGEN; IGE-BINDING; PLANT; EXPRESSION; ALPHA-1,3-FUCOSYL-TRANSFERASE;
D O I
10.1016/j.phytochem.2019.112050
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In- higher plants, asparagine-linked oligosaccharides (N-glycans) in glycoproteins carry unique carbohydrate epitopes, namely, a core alpha 1,3-fucose and/or a beta 1,2-xylose, which are common determinants responsible for the cross-reactivity of plant glycoproteins due to their strong immunogenicity. While these determinants and the relevant genes have been well characterized for herbaceous plants, information concerning whether many food plants cross-react with airborne pollens is not available. In this paper, we report on the characterization of a novel core alpha 1,3-fucosyltransferase gene identified from Mangifera indica L., one of the major plants potentially related to food allergy. Based on sequence information of plant homologues, we amplified a candidate cDNA (MiFUT11) from pericarp tissue. An in vitro assay demonstrated that the recombinant MiFUT11 protein transfers a fucose unit onto both non-fucosylated and core alpha 1,6-fucosylated oligosaccharides. A glycoform analysis using MALDI-TOF mass spectrometry showed that the introduction of the MiFUT11 cDNA increased the production of a core alpha 1,3- and alpha 1,6-fucosylated pauci-mannosidic oligosaccharide in Spodoptera Sf21 cells. Our findings suggest that MiFUT11 is a functional core alpha 1,3-fucosyltransferase gene that is involved in the assembly of cross-reactive N-glycans in mango fruit.
引用
收藏
页数:10
相关论文
共 11 条
  • [1] Techno-functional characterization of a proteinic concentrate obtained from mango (Mangifera indica L.) seed
    Perez Saucedo, Ma del Rosario
    Amando Ulloa, Jose
    Rosas Ulloa, Petra
    Ramirez Ramirez, Jose Carmen
    Silva-Carrillo, Yessica
    Ulloa Rangel, Blanca Estela
    BIOTECNIA, 2021, 23 (01): : 120 - 126
  • [2] The Role of 1-Methylcyclopropene in the regulation of ethylene biosynthesis and ethylene receptor gene expression in Mangifera indica L. (Mango Fruit)
    Li, Li
    Shuai, Liang
    Sun, Jian
    Li, Changbao
    Yi, Ping
    Zhou, Zhugui
    He, Xuemei
    Ling, Dongning
    Sheng, Jinfeng
    Kong, Kin-Weng
    Zheng, Fengjin
    Li, Jiemin
    Liu, Guoming
    Xin, Ming
    Li, Zhichun
    Tang, Yayuan
    FOOD SCIENCE & NUTRITION, 2020, 8 (02): : 1284 - 1294
  • [3] Isolation and characterization of 9-lipoxygenase and epoxide hydrolase 2 genes: Insight into lactone biosynthesis in mango fruit (Mangifera indica L.)
    Deshpande, Ashish B.
    Chidley, Hemangi G.
    Oak, Pranjali S.
    Pujari, Keshav H.
    Giri, Ashok P.
    Gupta, Vidya S.
    PHYTOCHEMISTRY, 2017, 138 : 65 - 75
  • [4] Isolation and characterization of two APETALA1-Like genes from mango (Mangifera indica L.)
    Yu, Haixia
    Luo, Cong
    Fan, Yan
    Zhang, Xiujuan
    Huang, Fang
    Li, Mei
    He, Xinhua
    SCIENTIA HORTICULTURAE, 2020, 259
  • [5] Molecular cloning and functional expression of Lewis type α1,3/α1,4-fucosyltransferase cDNAs from Mangifera indica L.
    Okada, Takahiro
    Ihara, Hideyuki
    Ito, Ritsu
    Ikeda, Yoshitaka
    PHYTOCHEMISTRY, 2017, 144 : 98 - 105
  • [6] Characterization of a core α1 → 3-fucosyltransferase from the snail Lymnaea stagnalis that is involved in the synthesis of complex-type N-glycans
    van Tetering, A
    Schiphorst, WECM
    van den Eijnden, DH
    van Die, I
    FEBS LETTERS, 1999, 461 (03) : 311 - 314
  • [7] Characterization of an NDR1/HIN1-like gene from mango (Mangifera indica L.) and its expression under postharvest and stress treatment
    Luo, C.
    Chen, J. W.
    Yu, H. X.
    Fan, Y.
    Zhang, X. J.
    He, X. H.
    XXX INTERNATIONAL HORTICULTURAL CONGRESS, IHC 2018-VII INTERNATIONAL SYMPOSIUM ON TROPICAL AND SUBTROPICAL FRUITS, AVOCADO, II INTERNATIONAL SYMPOSIUM ON JACKFRUIT AND OTHER MORACEAE AND II INTERNATIONAL SYMPOSIUM ON DATE PALM, 2020, 1299 : 281 - 290
  • [8] Gallotannin derivatives from mango (Mangifera indica L.) suppress adipogenesis and increase thermogenesis in 3T3-L1 adipocytes in part through the AMPK pathway
    Fang, Chuo
    Kim, Hyemee
    Noratto, Giuliana
    Sun, Yuxiang
    Talcott, Stephen T.
    Mertens-Talcott, Susanne U.
    JOURNAL OF FUNCTIONAL FOODS, 2018, 46 : 101 - 109
  • [9] Mango (Mangifera indica L.) peel extract fractions from different cultivars differentially affect lipid accumulation in 3T3-L1 adipocyte cells
    Taing, Meng-Wong
    Pierson, Jean-Thomas
    Shaw, Paul N.
    Dietzgen, Ralf G.
    Roberts-Thomson, Sarah J.
    Gidley, Michael J.
    Monteith, Gregory R.
    FOOD & FUNCTION, 2013, 4 (03) : 481 - 491
  • [10] DIVERSIFIED BIOLOGICAL ACTIVITY OF (1→3),(1→4)-α-D-GLUCAN FROM MANGO (MANGIFERA INDICA L.) FRUITS AGAINST HUMAN COLON CANCER CELLS
    Paduch, Roman
    Piet, Mateusz
    Wlizlo, Kamila
    Wertel, Iwona
    Pawlowska, Anna
    Sajnaga, Ewa
    Trojnar, Sylwia
    Kazimierczak, Waldemar
    Skowronek, Marcin
    Wiater, Adrian
    ACTA POLONIAE PHARMACEUTICA, 2022, 79 (03): : 367 - 375