Enhancing cardiovascular artificial intelligence (AI) research in the Netherlands: CVON-AI consortium

被引:7
|
作者
Benjamins, J. W. [1 ]
van Leeuwen, K. [2 ]
Hofstra, L. [3 ,4 ]
Rienstra, M. [1 ]
Appelman, Y. [4 ]
Nijhof, W. [5 ]
Verlaat, B. [6 ]
Everts, I. [2 ]
den Ruijter, H. M. [7 ]
Isgum, I. [7 ]
Leiner, T. [7 ]
Vliegenthart, R. [8 ]
Asselbergs, F. W. [7 ,9 ,10 ,11 ]
Juarez-Orozco, L. E. [1 ,12 ,13 ]
van der Harst, P. [1 ,9 ,14 ]
机构
[1] Univ Groningen, Univ Med Ctr Groningen, Dept Cardiol, Groningen, Netherlands
[2] Go Data Driven, Amsterdam, Netherlands
[3] Cardiol Ctr Nederland BV, Utrecht, Netherlands
[4] Locat VU Med Ctr, Amsterdam Univ Med Ctr, Dept Cardiol, Amsterdam, Netherlands
[5] Siemens Healthcare Nederland BV, The Hague, Netherlands
[6] Binx Io B V, Amsterdam, Netherlands
[7] Univ Utrecht, Dept Cardiol, Div Heart & Lungs, Univ Med Ctr Utrecht, Utrecht, Netherlands
[8] Univ Groningen, Univ Med Ctr Groningen, Dept Radiol, Groningen, Netherlands
[9] Netherlands Heart Inst, Durrer Ctr Cardiovasc Res, Utrecht, Netherlands
[10] UCL, Fac Populat Hlth Sci, Inst Cardiovasc Sci, London, England
[11] UCL, Inst Hlth Informat, London, England
[12] Turku Univ Hosp, Turku PET Ctr, Turku, Finland
[13] Univ Turku, Turku, Finland
[14] Univ Groningen, Univ Med Ctr Groningen, Dept Genet, Groningen, Netherlands
关键词
Machine learning; Artificial intelligence; Cardiovascular disease; CVON-AI consortium;
D O I
10.1007/s12471-019-1281-y
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background Machine learning (ML) allows the exploration and progressive improvement of very complex high-dimensional data patterns that can be utilised to optimise specific classification and prediction tasks, outperforming traditional statistical approaches. An enormous acceleration of ready-to-use tools and artificial intelligence (AI) applications, shaped by the emergence, refinement, and application of powerful ML algorithms in several areas of knowledge, is ongoing. Although such progress has begun to permeate the medical sciences and clinical medicine, implementation in cardiovascular medicine and research is still in its infancy. Objectives To lay out the theoretical framework, purpose, and structure of a novel AI consortium. Methods We have established a new Dutch research consortium, the CVON-AI, supported by the Netherlands Heart Foundation, to catalyse and facilitate the development and utilisation of AI solutions for existing and emerging cardiovascular research initiatives and to raise AI awareness in the cardiovascular research community. CVON-AI will connect to previously established CVON consortia and apply a cloud-based AI platform to supplement their planned traditional data-analysis approach. Results A pilot experiment on the CVON-AI cloud was conducted using cardiac magnetic resonance data. It demonstrated the feasibility of the platform and documented excellent correlation between AI-generated ventricular function estimates as compared to expert manual annotations. The resulting AI solution was then integrated in a web application. Conclusion CVON-AI is a new consortium meant to facilitate the implementation and raise awareness of AI in cardiovascular research in the Netherlands. CVON-AI will create an accessible cloud-based platform for cardiovascular researchers, demonstrate the clinical applicability of AI, optimise the analytical methodology of other ongoing CVON consortia, and promote AI awareness through education and training.
引用
收藏
页码:414 / 425
页数:12
相关论文
共 50 条
  • [1] Enhancing cardiovascular artificial intelligence (AI) research in the Netherlands: CVON-AI consortium
    J. W. Benjamins
    K. van Leeuwen
    L. Hofstra
    M. Rienstra
    Y. Appelman
    W. Nijhof
    B. Verlaat
    I. Everts
    H. M. den Ruijter
    I. Isgum
    T. Leiner
    R. Vliegenthart
    F. W. Asselbergs
    L. E. Juarez-Orozco
    P. van der Harst
    [J]. Netherlands Heart Journal, 2019, 27 : 414 - 425
  • [2] AI (Artificial Intelligence) and Hypertension Research
    Franco B. Mueller
    [J]. Current Hypertension Reports, 2020, 22
  • [3] AI (Artificial Intelligence) and Hypertension Research
    Mueller, Franco B.
    [J]. CURRENT HYPERTENSION REPORTS, 2020, 22 (09)
  • [4] CVON: an original Netherlands CardioVascular Research Initiative
    E. E. van der Wall
    [J]. Netherlands Heart Journal, 2012, 20 : 435 - 436
  • [5] CVON: an original Netherlands CardioVascular Research Initiative
    van der Wall, E. E.
    [J]. NETHERLANDS HEART JOURNAL, 2012, 20 (11) : 435 - 436
  • [6] Artificial Intelligence in Education and Learning (AI in Research)
    Besimi, Nuhi
    Besimi, Adrian
    Cico, Betim
    [J]. 2022 11TH MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO), 2022, : 613 - 618
  • [7] Artificial Intelligence (AI) and Cardiovascular Diseases: An Unexpected Alliance
    Romiti, Silvia
    Vinciguerra, Mattia
    Saade, Wael
    Anso Cortajarena, Inaki
    Greco, Ernesto
    [J]. CARDIOLOGY RESEARCH AND PRACTICE, 2020, 2020
  • [8] Artificial Intelligence (AI)
    Kreienberg, Rolf
    Janni, Wolfgang
    Vetter, Klaus
    [J]. GYNAKOLOGE, 2021, 54 (07): : 468 - 470
  • [9] 'AI, Artificial Intelligence'
    Mendelsohn, F
    [J]. TLS-THE TIMES LITERARY SUPPLEMENT, 2001, (5139): : 20 - 20
  • [10] ARTIFICIAL INTELLIGENCE (AI)
    Robb, Hannah
    [J]. AUSTRALIAN LAW JOURNAL, 2024, 98 (03):